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1 Introduction

Explicit time-domain finite difference (FD) schemes are widely used in many
fields of science and engineering to solve the wave equation. A standard result
that can be found in almost all textbooks is the existence of an upper limit
on the size of the time step ∆t; if this limit is exceeded schemes become
unstable. Considering the case of elastic wave propagation, let us define the
Courant number to be

C2 = β2 ∆t2/∆x2, (1)

Email addresses: bob@eps.s.u-tokyo.ac.jp (Robert J. Geller),
miju@jamstec.go.jp (Hiromitsu Mizutani),
nhirabayashi@houston.westerngeco.slb.com (Nobuyasu Hirabayashi).

Preprint submitted to Elsevier Science 21 December 2005



where

β =
√

µ/ρ (2)

is the velocity of wave propagation, ∆x is the spatial grid interval, µ is the
elastic modulus, and ρ the density. Using the above notation we can write the
usual textbook stability condition as

C ≤ C1, (3)

where the value of the stability limit C1 depends on the nature of the particular
FD scheme. In the usual case instability occurs whenever C > C1.

We have developed two optimally accurate time-domain predictor-corrector
FD schemes for numerically solving the wave equation; these schemes are
O(2, 4) and O(2, 2) (second order in time, and respectively fourth order and
second order in space). We discuss these schemes in detail below. An analysis
of the stability of these schemes (below) demonstrates a remarkable, and,
to our knowledge, previously unreported, stability behavior. We found that
eq. (3) applies, but that these two schemes are not unstable for all C > C1.
We found that for these schemes instability occurs for the range

C1 < C < C2, (4)

but that as the time step increases further, once again stability occurs for the
range

C2 ≤ C ≤ C3. (5)

Finally, as the time step increases still further, instability occurs for all

C3 < C, (6)

where

0 < C1 < C2 ≤ C3. (7)

We derive the particular values of C1, C2, and C3 below, and confirm the
existence of the additional ranges of stability and instability through numerical
experiments.
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2 Optimally accurate FD schemes

It is desirable for FD methods to be accurate and efficient. Our group devel-
oped a general criterion for optimally accurate numerical operators for solving
the wave equation in arbitrarily heterogeneous media[1]. This criterion was
derived by a formal analysis of the error of the numerical solution using an
eigenfunction expansion, but it is not necessary to know the actual numerical
values of the eigenfrequencies and eigenfunctions to use this criterion to derive
optimally accurate numerical operators.

We used the above criterion to derive optimally accurate O(2, 2) (second order
accuracy in time and space) time-domain finite-difference (FD) schemes for
one-dimensional (1-D) media[2], and for 2-D and 3-D media[3]. These schemes
are predictor-corrector schemes, in which a conventional FD scheme (the pre-
dictor) is used to extrapolate the wavefield to the next time step, followed
by a second calculation (the corrector) to eliminate the lowest order error of
the predictor. The implementation of the predictor-corrector scheme differs
greatly from the Lax-Wendroff FD scheme[4] but we have shown that these
two types of schemes are essentially equivalent[5].

The general criterion for optimally accurate operators[1] is not limited to
O(2, 2) schemes, but can also be used to derive optimally accurate schemes
of various other types. We recently used this criterion to derive an optimally
accurate O(2, 4) (second order in time and fourth order in space) FD scheme
for a one-dimensional heterogeneous medium as part of a study in which we
compare the cost-performance ratios of various optimally accurate schemes[6].
We show here that some of the numerical schemes we derived in that and
earlier studies have two distinct ranges of the time-step ∆t for which stable
solutions are obtained.

3 Optimally accurate FD schemes for 1-D homogeneous media

In this paper, for simplicity we consider only a homogeneous 1-D medium with
periodic boundary conditions. We discretize and solve the 1-D elastic equation
of motion:

µ
∂2u(x, t)

∂x2
− ρ

∂2u(x, t)

∂t2
= −f(x, t), (8)

where x and t are the spatial and temporal coordinates, u is the displacement,
and f the external force.
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3.1 O(2, 4) scheme

We first analyze the stability of the O(2, 4) scheme. Omitting the force term
for simplicity, we write the predictor step as

c̃N+1
n − 2cN

n + cN−1
n = C2L(2)cN

n , (9)

where cN
n and cN−1

n are the corrected values of the displacement at the nth node
at the present (Nth) and past (N − 1th) time steps, c̃N+1

n is the uncorrected
value of the displacement at the nth node at the future (N + 1th) time step.

The operator on the r.h.s. of eq. (9) and an operator which is used in the
corrector step are defined respectively as follows:

L(2) =
1

12

(
−1, 16, −30, 16, −1

)
(10)

L(4) =
1

90

(
−1, 4, −6, 4, −1

)
. (11)

When these operators act on a vector we obtain:

LcN
n =

2∑
j=−2

Ljc
N
n+j. (12)

Using the above definitions, the correction term and the corrected value of the
displacement at the next time step are respectively:

δcN+1
n =−

(
L(4)c̃N+1

n − 2L(4)cN
n + L(4)cN−1

n

)

+
C2

12

(
L(2)c̃N+1

n − 2L(2)cN
n + L(2)cN−1

n

)
(13)

cN+1
n = c̃N+1

n + δcN+1
n . (14)

To evaluate the stability of the above scheme we sum the l.h.s. and r.h.s. of
eqs. (9) and (13) to obtain:

cN+1
n − 2cN

n + cN−1
n = C2L(2)cN

n − C2L(4)L(2)cN
n +

C4

12
L(2)L(2)cN

n , (15)

where L(2)L(2) and L(4)L(2) are convolutions of the respective operators. The
stability limit is evaluated by a Von Neumann stability analysis in which a

4



harmonic solution of the form

cN+l
n+m = exp (ilω∆t) exp (imk∆x) , (16)

where i =
√−1, m and l are spatial and temporal indices respectively, ω is

the frequency, and k is the wavenumber, is substituted into eq. (15).

We define the following variables:

A =cos(ω∆t)

E =cos(k∆x)

F =cos(2k∆x) = 2E2 − 1

G =cos(3k∆x) = 4E3 − 3E

H =cos(4k∆x) = 8E4 − 8E2 + 1. (17)

Omitting details, we obtain

A= 1 +
C2

12
(−15 + 16E − F )

− C2

1080
(155 − 236E + 100F − 20G + H)

+
C4

1728
(707 − 992E + 316F − 32G + H). (18)

The stability condition is that A should be real and that

−1 ≤ A ≤ 1 for all − 1 ≤ E ≤ 1. (19)

The values of A for various values of E are shown in Fig. 1 (left panel). It is
clear (and can be verified analytically) that there are two regions for which
eq. (19) is satisfied. The first is

0 ≤ C ≤
√

(53 −√
109)/40 ≈ 1.0315, (20)

and the second is

1.2593 ≈
√

(53 +
√

109)/40 ≤ C ≤
√

53/20 ≈ 1.6279. (21)

On the other hand, for values of C lying between the respective stability
ranges, namely

1.0315 ≈
√

(53 −
√

109)/40 < C <
√

(53 +
√

109)/40 ≈ 1.2593, (22)
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Fig. 1. (Left) Stability for the optimally accurate O(2, 4) FD scheme (shaded
areas) is achieved when A = cos(ω∆t) lies between -1 and 1 for all relevant
values of E = cos k∆x. The second region of stability (shaded area at right,
1.2593 ≤ C ≤ 1.6279) is separated from the primary region of stability by a re-
gion of instability from 1.0315 < C < 1.2593. (Right) Stability for the optimally
accurate O(2, 2) FD scheme. The “classic” region of stability (shaded) is 0 ≤ C ≤ 1,
but stability is also obtained for the singular point C = 2.

the FD scheme will be unstable.

The stability range indicated by eq. (20) would normally be regarded as “the”
stability range of the O(2, 4) scheme. To our knowledge the existence of a
second range of stability (eq. 21 for the scheme considered here) has not been
previously pointed out, and, in any case, its existence is certainly not widely
known.

The classic CFL result[7] states that an FD scheme cannot converge to the
analytic solution if the analytic domain of dependence is not contained in the
numerical domain of dependence. From eq. (15) we see that CFL therefore
requires C ≤ 4 for the O(2, 4) predictor–corrector scheme considered above.
Eq. (21) is thus fully consistent with CFL.

In order to confirm that the ranges in eqs. (20) and (21) are stable, and that
values outside these ranges are unstable, we conduct the following numerical
experiments (left and center panels of Fig. 2). We use the O(2, 4) predictor-
corrector scheme to compute synthetic seismograms (numerical solutions of the
time-dependence of the wavefield) for a homogeneous medium with a length
of 1 km, and a seismic wave velocity β = 1 km/s, with periodic boundary
conditions. The source is an optimally accurate point force, which is a point
force “smeared out” in space and time using the following weights:
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Fourth order predictor−corrector
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Second order predictor−corrector
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Fig. 2. Numerical solutions for values of C in the vicinity of the lower limit (left
panel) and upper limit (center panel) of the second stability region for the optimally
accurate O(2, 4) scheme, and (right panel) in the vicinity of the singular stability
point C = 2 for the optimally accurate O(2, 2) scheme. The value of C used for each
trace is the sum of the value in the left hand column (e.g. −2×10−6 for the top trace
in the left panel) and the value shown at the top of the panel (e.g., C = 1.259368 for
the left panel). The left and center panels show that stable waveforms are obtained
for values of C inside the second stability region (eq. 21), but that solutions for values
of C immediately outside that region are unstable. The right panel demonstrates
that C = 2 is a singular point of stability.

1

180
×

x − 2∆x x − ∆x x x + ∆x x + 2∆x

t − ∆t 15

t - 2 8 138 8 -2

t + ∆t 15

, (23)

which are chosen so that the error of the force term matches the errors of
the other operators. Note that blank spaces in eq. (23) indicate zeros. The
weighting scheme in eq. (23) is essentially perfect for a homogeneous medium
and a source exactly at a grid point. We have derived accurate treatments
of the source term for heterogeneous media or sources located between grid
points[8], but a detailed discussion is beyond the scope of this paper.

The time dependence of the force is a “Ricker wavelet” (a function commonly
used in seismological modeling studies), defined as follows]:

R(t) = (2π2f2
c t2 − 1) exp(−π2f2

c t2), (24)

where the characteristic frequency fc has a value of 30 Hz. The source is
located at x0 = 500 m, and the receiver at x = 250 m.

As shown by the left and center panels of Fig. 2, the solution is stable for
values of C within the second stability range (eq. 21), but unstable for values
of C outside this range. Thus the above theoretical results are confirmed.
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3.2 O(2, 2) scheme

We now investigate the possible existence of a second range of stability for
the optimally accurate O(2, 2) scheme, for which eqs. (1), (9), and (13)–(15)
hold without change, provided that the operators in eqs. (10) and (11) are
redefined as follows:

L(2) =
(

1, −2, 1

)
(25)

L(4) =
1

12
L(2), (26)

and the limits of summation in eq. (12) are −1 to 1.

We substitute eq. (16) into eq. (15) to obtain the following dispersion relation
(using eq. 17):

A = 1 + C2(E − 1) + (3 − 4E + F )

(
C4

12
− C2

12

)
. (27)

As shown in Fig. 1 (right panel), and as can be analytically verified, the
stability condition eq. (19) is satisfied in two cases. The first is the well known
case of

0 ≤ C ≤ 1. (28)

However, Fig. 1 (right panel) shows that for the singular point C = 2, the
stability condition eq. (19) is also satisfied.

The weights for the point force for the optimally accurate O(2, 2) scheme are

1

12
×

x− ∆x x x + ∆x

t − ∆t 1

t 1 8 1

t + ∆t 1

. (29)

A numerical experiment (Fig. 2, right) shows that stable solutions are obtained
for C = 2. We have not run these calculations to exceedingly long times; it is
possible that accumulated round-off errors might eventually lead to instability.
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Note that for the optimally accurate O(2, 2) scheme the CFL condition[7]
requires C ≤ 2, so the singular point (C = 2) of the second stability regime is
exactly at the upper CFL limit.

4 Discussion

Normally as FD schemes become higher order the upper bound on C decreases.
For example, a conventional O(2, 2) FD scheme (eq. 9 using eq. 25) must
satisfy C ≤ 1, while a conventional O(2, 4) FD scheme (eq. 9 using eq. 10)

must satisfy C ≤
√

3/4 ≈ 0.8660. Eq. (20) is an exception to this general
pattern.

Fig. 2 shows that all of the stable solutions are basically accurate. We omit
a detailed discussion, but it should be noted that the error of the numerical
solutions for the second region of stability of the optimally accurate O(2, 4)
scheme is about an order of magnitude worse than that for the first region.
The errors for the case C = 2 for the optimally accurate O(2, 2) scheme were
smaller than those for 0 ≤ C ≤ 1 in some cases, and worse in others.

Although the potential utility of the second range of stability in practical cal-
culations remains to be seen, it is a fascinating and apparently heretofore un-
known (certainly not widely known) mathematical phenomenon, which, having
been found, is fully explained by the analyses presented above.

In this paper we considered only the case of an infinite 1-D homogeneous
medium (or, equivalently, a 1-D medium with periodic boundary conditions).
It should be possible to extend this work to heterogeneous media with free
surface boundary conditions using the eigenproblem approaches from our work
on other numerical schemes[2,3], but a detailed discussion is omitted.
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