
A Comparison of Staggered-Grid, Conventional
One-step, and Optimally Accurate Finite-Difference

Schemes for Computing Synthetic Seismograms

Robert J. Geller

Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

email: bob@eps.s.u-tokyo.ac.jp

Nobuyasu Hirabayashi

Schlumberger K.K., 2-2-1 Fuchinobe, Sagamihara-shi, Kanagawa-ken 229-0006, Japan

email: nhirabayashi@slb.com

and

Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo,

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

Hiromitsu Mizutani

Institute for Research on Earth Evolution (IFREE),

Japan Agency of Marine-Earth Science and Technology (JAMSTEC)

Showa-machi 3173-25, Kanazawa-ku, Yokohama 236-0001, Japan

email: miju@jamstec.go.jp

Short title: Comparison of FD Schemes

Revised: May 30, 2006 Submitted: October 19, 2005

1



ABSTRACT

We compare the cost-effectiveness (as quantified by the CPU time required to attain a given level of

accuracy) of various finite-difference (FD) schemes for computing synthetic seismograms. Broadly

speaking, published FD schemes can be divided into two classes: staggered-grid (SG) schemes, in

which velocity and stress are the dependent variables, and schemes in which displacement (or ve-

locity) is the only dependent variable. “Displacement only” schemes can be further divided into

conventional one-step FD schemes and optimally accurate FD schemes; the latter have been shown

to be about an order of magnitude more cost-effective than the former for one-dimensional (1-D)

problems, and two orders of magnitude more efficient for 3-D problems. We show that SG schemes

can be transformed into one-step schemes in which velocity is the only dependent variable, thereby

allowing a straightforward comparison of SG, conventional one-step, and optimally accurate FD

schemes in a common framework. We use this result to show that an SG scheme which is second

order in time and fourth order in space, O(2,4), is equivalent to a non-optimally accurate one-step

FD scheme with a seven point spatial operator, whereas a conventional O(2,4) one-step FD scheme

uses only a five point spatial operator. Thus SG schemes have no advantages in accuracy over con-

ventional one-step FD schemes, while they require more CPU time and memory. In summary,

optimally accurate FD schemes significantly outperform both SG schemes and conventional one-

step FD schemes. Only homogeneous one-dimensional (1-D) cases are considered in this paper,

but the above conclusions also apply to the heterogeneous 1-D, 2-D and 3-D cases.
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INTRODUCTION

Extensive research has been conducted on finite-difference (FD) methods for numerically solv-

ing the elastic equation of motion (see, e.g., review by Carcione et al., 2002). However, FD meth-

ods have heretofore mainly been used to make forward calculations of synthetic seismograms to

assist in understanding what types of waves would be produced by a given Earth structure model,

rather than to compute synthetics that will be compared quantitatively to observed data to invert

for Earth structure. For this reason, FD schemes that produce “reasonable” synthetics seem to have

been acceptable to most users, and accurate quantification of the error of synthetic seismograms

does not seem to have been widely viewed as an important issue. However, applications which re-

quire highly and verifiably accurate synthetics are now becoming more widespread. For example,

3-D reverse-time prestack depth migration (RT PSDM) is now becoming increasingly important

in exploration, while waveform inversion for Earth structure is becoming increasingly common

in academic research. As these applications require accurate calculations for 3-D Earth models,

computational efficiency is essential. A re-examination of FD schemes thus seems timely.

Broadly speaking, published FD schemes can be divided into two classes: staggered-grid (here-

after called SG) schemes, in which velocity and stress are the dependent variables, and schemes

in which displacement (or velocity) is the only dependent variable. “Displacement only” schemes

can be further divided into conventional one-step FD schemes and optimally accurate FD schemes.

As noted by Levander (1988, p. 1425), some conventional one-step FD schemes (e.g., that of Kelly

et al., 1976) suffer from some or all of the following problems: (1) instability and/or worsened

grid dispersion/anisotropy for high values of Poisson’s ratio, (2) difficulty in representing sources,

and (3) problems with the boundary conditions at free surfaces or internal boundaries. However,
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because the “displacement only” schemes (both conventional and optimally accurate) used in this

paper and our other publications on this subject (e.g., Geller and Takeuchi, 1995, 1998; Takeuchi et

al., 1996; Takeuchi and Geller, 2000; and Hirabayashi et al., 2006) are based on the weak form of

the equation of motion (e.g., Strang and Fix, 1973; Geller and Ohminato, 1994), they do not suffer

from these problems for the same reasons that finite element schemes do not suffer from such prob-

lems. For example, both the optimally acccurate and conventional FD schemes for heterogeneous

2-D and 3-D media with free surface boundary conditions presented by Takeuchi and Geller (2000)

are stable for all values of the Poisson number.

The reasons that many previously published FD schemes have stability problems in handling

external and internal boundaries can be explained by a formal error analysis of these schemes.

As we have presented a preliminary report on this topic (Mizutani and Geller, 2005) and are now

preparing a full paper, we omit further discussion here.

OPTIMALLY ACCURATE OPERATORS

Lax and Wendroff (1964) presented a method for greatly improving the cost-performance ratio

of schemes for solving the scalar wave equation. Such schemes have also been presented by, among

others, Marfurt (1984), Claerbout (1985, pp. 262–265), Dablain (1986), and Korn (1987). While

the above and other such schemes appear to differ in form, Mizutani et al. (2000) showed that

they are all essentially equivalent. The above schemes are limited to the case of the scalar wave

equation. In contrast, as discussed below, the optimally accurate schemes developed by our group,

are, unlike the above schemes, also applicable to the full elastic equation of motion.

In order to derive an efficient scheme for the P-SV problem (or the general 3-D problem) we

used first principles to derive a general framework for a formal evaluation of the error of numer-
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ical solutions, using an eigenfunction expansion. We used this formal error evaluation to derive

a general criterion for optimally accurate numerical operators for solving the elastic equation of

motion (Geller and Takeuchi, 1995). Note that it is not necessary to know the numerical values of

the eigenfrequencies and eigenfunctions in order to use this criterion to design optimally accurate

operators. This criterion can be used to derive optimally accurate computational schemes for ar-

bitrarily heterogeneous media; for the case of homogeneous media it is basically equivalent to the

minimization of the numerical dispersion of phase velocity. Two additional benefits are obtained

by using this criterion to design operators. (1) The error of the numerical solution as a function

of grid size (for the particular type of scheme being used) can be estimated before calculations

are made, so that the user’s accuracy requirements can be met without using an unnecessarily fine

grid. (2) The use of this criterion allows stable operators for boundary nodes to be derived in a

straightfoward fashion.

Our first applications of the above criterion were to frequency domain calculations (e.g., Geller

and Takeuchi, 1995; Takeuchi et al., 1996). We then applied this criterion to time-domain calcu-

lations to derive optimally accurate O(2,2) FD schemes, i.e. FD schemes which are second order

in time and space, for one dimensional (1-D) problems (Geller and Takeuchi, 1998) and 2-D and

3-D problems (Takeuchi and Geller, 2000). We recently also derived (Hirabayashi et al., 2006)

an optimally accurate O(2,4) time-domain FD scheme, i.e. an FD scheme which is second order

in time and fourth order in space. The above optimally accurate schemes can compute synthetic

seismograms for arbitrarily located sources with the same accuracy as for sources at nodes using

the source representation of Takeuchi and Geller (2003).

Displacement is the only dependent variable in the above optimally accurate time-domain
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schemes, which are implemented using a predictor-corrector algorithm. In the predictor step a

conventional one-step FD algorithm is used to compute the displacement at the next time step; the

corrector step then computes a correction which eliminates the lowest order error of the predictor

step. Because they are predictor-correctors, the CPU time for the optimally accurate schemes is

about two to three times that of a conventional one-step scheme of the same order, but the improve-

ment in accuracy is substantial, so that the overall improvement in cost-performance (CPU time

require to attain a given level of accuracy) is respectively on the order of a factor of ten, fifty, or

over one hundred for the 1-D, 2-D, and 3-D cases (Geller and Takeuchi, 1998; Takeuchi and Geller,

2000). For the convenience of readers, the Appendix of this paper presents the difference stencils

and a “numerical recipe” for the optimally accurate O(2,2) FD scheme at an interior point of a

homogeneous model (after Geller and Takeuchi, 1998).

Most of our work using optimally accurate numerical operators has been in applications to

global seismology, where we compute seismograms in a hetereogeneous earth model (usually verti-

cally heterogeneous but laterally homogeneous, but not limited to the laterally homogeneous case).

The synthetic seismograms computed using our methods include both body-waves and surface-

waves. We have been using these methods for over ten years to make calculations in heterogeneous

Earth models (e.g., Takeuchi et al., 1996; Kawai et al., 2006), and have presented extensive verifi-

cation and validation exercises. Although the length scale in global seismology is greater than in

exploration, the physics of the problem is essentially the same.

STAGGERED-GRID SCHEMES

Staggered-grid (SG) FD schemes appear to be the most widely used methods for numerical

computation of synthetic seismograms by the exploration community. In SG schemes, the elas-
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tic equation of motion is written as a system of coupled first order partial differential equations

(p.d.e.’s), with stress and velocity (rather than displacement) as the two sets of dependent vari-

ables. SG schemes then discretize and solve these first order p.d.e.’s using FD techniques. The

most significant works on SG schemes (Virieux, 1984, 1986: Levander, 1988) were all published

in Geophysics. It appears that SG schemes are widely thought to be preferable to other FD schemes.

For example, Carcione et al. (2002, p. 1308-1309) commented as follows:

“Staggered grid effectively halves the grid spacing, increasing the accuracy of the ap-

proximation.. . . Staggered grids improve accuracy and stability.. . . ”

In this paper we evaluate SG schemes. We first show that SG schemes can be transformed

into rigorously equivalent one-step FD schemes, whose computational requirements are somewhat

greater than conventional one-step FD schemes, particularly for the case of O(2,4) SG schemes. We

next show that the performance of optimally accurate FD schemes is superior to that of conventional

one-step FD schemes. Thus optimally accurate FD schemes should be used in preference to either

conventional one-step FD schemes or SG schemes.

Analysis of SG schemes

We consider a 1-D problem where u is the displacement,

v = u,t (1)

is the velocity,

τ = µu,x (2)

is the stress, f is the body force, ρ is the density, µ is the elastic constant, x is the spatial coordinate,
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and t is time. We write the spatial and temporal partial derivatives as u,x and u,t , respectively. The

strong form of the equation of motion is:

(µu,x),x−ρu,tt =− f . (3)

On the other hand, by using velocity v and stress τ as the dependent variables, the following

two coupled first order p.d.e.’s that serve as the basis for SG schemes are obtained:

τ,t = µv,x (4)

τ,x = ρv,t− f . (5)

Note that we obtained eq. (4) by taking the time derivative of both sides of eq. (2) and then using

eq. (1). We obtained eq. (5) by substituting eqs. (1) and (2) into eq. (3).

If we differentiate eqs. (4) and (5) with respect to x and t respectively, we obtain the following

two equations which both have the same left hand sides (l.h.s.):

τ,tx = (µv,x),x. (6)

τ,tx = ρv,tt − f,t (7)

By equating the right hand sides (r.h.s.) of eqs. (6) and (7) we obtain the following relation,

which is the time derivative of eq. (3):

(µv,x),x−ρv,tt =− f,t . (8)
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It is purely a matter of convenience whether we use eq. (3), or eq. (8), or the coupled system of

eqs. (4) and (5), as they are equivalent. The above manipulations are trivial, but, as we show below,

they provide a roadmap for clarifying the nature of SG schemes.

For the remainder of this paper we consider a homogeneous medium (i.e., µ and ρ are constants)

with periodic boundary conditions.

O(2,2) SG scheme

We now consider the standard O(2,2) SG scheme (abbreviated hereafter as SG-2). We begin

with the discretized versions of eq. (5) centered around the points (t + ∆t/2,x) and (t−∆t/2,x)

respectively. We have:

1
∆x

[τ(t +∆t/2, x+∆x/2)− τ(t +∆t/2, x−∆x/2)] =
ρ
∆t

[v(t +∆t ,x)− v(t ,x)]− f (t +∆t/2, x) (9)

1
∆x

[τ(t−∆t/2, x+∆x/2)− τ(t−∆t/2, x−∆x/2)] =
ρ
∆t

[v(t ,x)− v(t−∆t ,x)]− f (t−∆t/2, x). (10)

We now subtract eq. (10) from eq. (9) and divide both sides by ∆t to obtain the SG-2 counterpart

to eq. (7):

1
∆x∆t

[τ(t +∆t/2, x+∆x/2)− τ(t +∆t/2, x−∆x/2)− τ(t−∆t/2, x+∆x/2)

+τ(t−∆t/2, x−∆x/2)] =
ρ

∆t2 [v(t +∆t ,x)−2v(t ,x)+ v(t−∆t ,x)]

− 1
∆t

[ f (t +∆t/2, x)− f (t−∆t/2, x)]. (11)

We next consider the discretized versions of eq. (4) centered around the points (t,x + ∆x/2) and

(t,x−∆x/2) respectively. We have

1
∆t

[τ(t +∆t/2, x+∆x/2)− τ(t−∆t/2, x+∆x/2)] =
µ

∆x
[v(t,x+∆x)− v(t ,x)] (12)

1
∆t

[τ(t +∆t/2, x−∆x/2)− τ(t−∆t/2, x−∆x/2)] =
µ

∆x
[v(t,x)− v(t ,x−∆x)]. (13)
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We now subtract eq. (13) from eq. (12) and divide both sides by ∆x to obtain the SG-2 counterpart

to eq. (6):

1
∆x∆t

[τ(t +∆t/2, x+∆x/2)− τ(t +∆t/2, x−∆x/2)− τ(t−∆t/2, x+∆x/2)

+τ(t−∆t/2, x−∆x/2)] =
µ

∆x2 [v(t,x+∆x)−2v(t,x)+ v(t ,x−∆x)]. (14)

As the l.h.s. of eqs. (11) and (14) are identical, it follows that their respective r.h.s. are also equal.

We thus obtain the SG-2 counterpart to eq. (8):

ρ
∆t2 [v(t +∆t,x)−2v(t,x)+ v(t−∆t ,x)]− 1

∆t
[ f (t +∆t/2, x)− f (t−∆t/2, x)]

=
µ

∆x2 [v(t,x+∆x)−2v(t,x)+ v(t,x−∆x)]. (15)

We refer to this scheme as CSG-2 in our numerical example, because it is the one-step counterpart

to SG-2.

Let us now compare eq. (15) to the well known conventional one-step O(2,2) FD scheme (e.g.,

Geller and Takeuchi, 1998), hereafter called CONV-2, which is as follows:

ρ
∆t2 [u(t +∆t,x)−2u(t ,x)+u(t−∆t,x)]− f (t ,x)

=
µ

∆x2 [u(t,x+∆x)−2u(t ,x)+u(t,x−∆x)]. (16)

Ignoring the differences in the force term, eq. (15), which, as we showed above, is strictly equal

to SG-2, is just the time derivative of CONV-2 (eq. 16). This means that SG-2 schemes are not

different in any fundamental way from CONV-2 schemes. Functionally (except for the handling of

the force term) the SG-2 scheme is identical to a one-step CONV-2 scheme (but with velocity rather

than displacement as the dependent variable) that explicitly defines certain intermediate quantities

as named variables which are stored in memory and then almost immediately thereafter retrieved,
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used, and discarded. (A similar observation was also made by Luo and Schuster, 1990.) Thus

no improvement in accuracy is obtained by using SG-2 rather than CONV-2, while CPU time and

memory requirements are slightly increased. This is confirmed by numerical tests, below.

O(2,4) SG scheme

We now consider the standard O(2,4) SG scheme, which we hereafter abbreviate as SG-4.

We begin with the discretized versions of eq. (5) centered around the points (t +∆t/2,x) and (t−
∆t/2,x) respectively. We have

1
∆x

[
− 1

24
τ(t +∆t/2, x+3∆x/2)+

9
8

τ(t +∆t/2, x+∆x/2)− 9
8

τ(t +∆t/2, x−∆x/2)

+
1
24

τ(t +∆t/2, x−3∆x/2)
]

=
ρ
∆t

[v(t +∆t ,x)− v(t,x)]− f (t +∆t/2, x) (17)

1
∆x

[
− 1

24
τ(t−∆t/2, x+3∆x/2)+

9
8

τ(t−∆t/2, x+∆x/2)− 9
8

τ(t−∆t/2, x−∆x/2)

+
1
24

τ(t−∆t/2, x−3∆x/2)
]

=
ρ
∆t

[v(t ,x)− v(t−∆t ,x)]− f (t−∆t/2, x) (18)

We now subtract eq. (18) from eq. (17) and divide both sides by ∆t to obtain the SG-4 counterpart

to eq. (7):

1
∆x∆t

[
− 1

24
τ(t +∆t/2, x+3∆x/2)+

9
8

τ(t +∆t/2, x+∆x/2)− 9
8

τ(t +∆t/2, x−∆x/2)

+
1
24

τ(t +∆t/2, x−3∆x/2)+
1
24

τ(t−∆t/2, x+3∆x/2)− 9
8

τ(t−∆t/2, x+∆x/2)

+
9
8

τ(t−∆t/2, x−∆x/2)− 1
24

τ(t−∆t/2, x−3∆x/2)
]

=
ρ

∆t2 [v(t +∆t,x)−2v(t,x)+ v(t−∆t ,x)]− 1
∆t

[ f (t +∆t/2, x)− f (t−∆t/2, x)]. (19)

We next consider the discretized versions of eq. (4) centered around the points (t,x + 3∆x/2),

(t,x+∆x/2), (t,x−∆x/2), and (t,x−3∆x/2), respectively. We have

1
∆t

[τ(t +∆t/2, x+3∆x/2)− τ(t−∆t/2, x+3∆x/2)]
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=
µ

∆x

[
− 1

24
v(t,x+3∆x)+

9
8

v(t ,x+2∆x)− 9
8

v(t ,x+∆x)+
1
24

v(t,x)
]

(20)

1
∆t

[τ(t +∆t/2, x+∆x/2)− τ(t−∆t/2, x+∆x/2)]

=
µ

∆x

[
− 1

24
v(t,x+2∆x)+

9
8

v(t ,x+∆x)− 9
8

v(t ,x)+
1
24

v(t ,x−∆x)
]

(21)

1
∆t

[τ(t +∆t/2, x−∆x/2)− τ(t−∆t/2, x−∆x/2)]

=
µ

∆x

[
− 1

24
v(t,x+∆x)+

9
8

v(t ,x)− 9
8

v(t ,x−∆x)+
1
24

v(t ,x−2∆x)
]

(22)

1
∆t

[τ(t +∆t/2, x−3∆x/2)− τ(t−∆t/2, x−3∆x/2)]

=
µ

∆x

[
− 1

24
v(t,x)+

9
8

v(t ,x−∆x)− 9
8

v(t ,x−2∆x)+
1
24

v(t ,x−3∆x)
]
. (23)

We now multiply eqs. (20), (21), (22), and (23) by weights of −1/24, 9/8, −9/8, and 1/24

respectively, add the four weighted equations, and divide both sides of the resulting equation by ∆x

to obtain the SG-4 counterpart of eq. (6):

1
∆x∆t

[
− 1

24
τ(t +∆t/2, x+3∆x/2)+

9
8

τ(t +∆t/2, x+∆x/2)− 9
8

τ(t +∆t/2, x−∆x/2)

+
1
24

τ(t +∆t/2, x−3∆x/2)+
1
24

τ(t−∆t/2, x+3∆x/2)− 9
8

τ(t−∆t/2, x+∆x/2)

+
9
8

τ(t−∆t/2, x−∆x/2)− 1
24

τ(t−∆t/2, x−3∆x/2)
]

=
µ

576∆x2 [v(t,x+3∆x)−54v(t,x+2∆x)+783v(t ,x+∆x)−1460v(t ,x)

+783v(t,x−∆x)−54v(t,x−2∆x)+ v(t,x−3∆x)] . (24)

As the l.h.s. of eqs. (19) and (24) are identical, it follows that the respective r.h.s. are also equal.

We thus obtain the SG-4 counterpart of eq. (8):

ρ
∆t2 [v(t +∆t,x)−2v(t,x)+ v(t−∆t ,x)]− 1

∆t
[ f (t +∆t/2, x)− f (t−∆t/2, x)]
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=
µ

576∆x2 [v(t,x+3∆x)−54v(t,x+2∆x)+783v(t,x+∆x)−1460v(t ,x)

+783v(t,x−∆x)−54v(t,x−2∆x)+ v(t ,x−3∆x)]

=
µ

∆x2

{
1
64

[
1
9

(v(t,x+3∆x)−2v(t ,x)+ v(t ,x−3∆x))
]

−24
64

[
1
4

(v(t,x+2∆x)−2v(t,x)+ v(t,x−2∆x))
]

+
87
64

[v(t,x+∆x)−2v(t,x)+ v(t ,x−∆x)]
}

. (25)

The above result shows that SG-4 is rigorously equivalent to a one-step scheme with a seven

point spatial operator, which we refer to as CSG-4, because it is the one step counterpart to SG-

4. Note that the last three lines of eq. (25) have been rewritten to show that CSG-4 is, in effect,

achieving fourth order accuracy by summing three different operators for the second derivative with

weights of 1/64, -24/64, and 87/64 respectively. As we show below (see eq. 27), despite using a

seven point operator, CSG-4 achieves only fourth order accuracy. However, as shown below by

eqs. (26) and (28), a five point operator is sufficient to achieve fourth order accuracy, so the seven

point operator in eq. (25) is unnecessary. Omitting intermediate steps, note that if the three weights

in eq. (25), namely 1/64, −24/64, and 87/64, were replaced by weights of 1/10, -6/10, and 15/10

respectively, sixth order accuracy would be obtained. However, there is no obvious way to change

the derivation of the SG-4 scheme to obtain the latter set of weights.

In contrast to eq. (25), the conventional O(2,4) one-step FD scheme (e.g., Hirabayashi et al.,

200), hereafter called CONV-4, is as follows:

ρ
∆t2 [u(t +∆t,x)−2u(t,x)+u(t−∆t,x)]− f (t ,x)

=
µ

12∆x2 [−u(t,x+2∆x)+16u(t ,x+∆x)−30u(t ,x)+16u(t ,x−∆x)−u(t ,x−2∆x)]

=
µ

∆x2

{
−1

3

[
1
4

(u(t,x+2∆x)−2u(t ,x)+u(t,x−2∆x))
]
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+
4
3

[u(t,x+∆x)−2u(t,x)+u(t ,x−∆x)]
}

. (26)

Note that the last two lines of eq. (26) have been rewritten to show that CONV-4 is, in effect,

achieving fourth order accuracy by summing two different operators for the second derivative with

weights of -1/3 and 4/3 respectively.

If we expand the SG-4 spatial operator (the r.h.s. of eq. 25) in a Taylor series we obtain:

r.h.s. of eq (25) = µ

(
∂2v
∂x2 −

3∆x4

320
∂6v
∂x6 + · · ·

)
. (27)

Thus the error is O(∆x4). On the other hand, if we expand the CONV-4 spatial operator (the r.h.s

of eq. 26) in a Taylor series we obtain:

r.h.s. of eq (26) = µ

(
∂2u
∂x2 −

∆x4

90
∂6u
∂x6 + · · ·

)
, (28)

so the error of CONV-4 is thus also O(∆x4).

In summary, SG-4 has the following two significant drawbacks: first, it effectively uses a seven

point spatial operator (eq. 25), rather than the five point operator needed by CONV-4 (eq. 26), to

compute a quantity that is only accurate to fourth order; second, it entails needless overhead for

defining, computing, and storing, and then almost immediately thereafter retrieving, using and dis-

carding intermediate quantities. The use of SG-4 as opposed to CONV-4 (or the use of SG-2 as

opposed to CONV-2) is thus contra-indicated. This is confirmed below by numerical tests. How-

ever, we also show below that optimally accurate schemes should in turn be preferred to either

CONV-2, SG-2, CONV-4, or SG-4.

STABILITY AND NUMERICAL DISPERSION
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In order to determine the stability condition and numerical dispersion of phase velocity for each

type of FD scheme we perform a standard von Neumann analysis, in which we substitute a solution

of the form u = exp(iω∆t)exp(ik∆x) into the FD equations. The stability limit is expressed by the

Courant parameter, C , which is defined as follows:

C = β∆t/∆x, (29)

where the velocity of wave propagation is

β =
√

µ/ρ. (30)

The stability limit for each scheme is the maximum value of C for which A = cosω∆t is real

and for which −1≤ A≤ 1 for all −1≤ E ≤ 1, where E = cosk∆x. We also define F = cos2k∆x,

G = cos3k∆x, and H = cos4k∆x, which are used below.

In addition to the stability limit, another key parameter is the numerical dispersion of the phase

velocity for each scheme, which is defined to be:

βnum = ω/k. (31)

Eq. (31) can be used to derive both exact expressions for βnum and approximate expressions for

small values of k∆x.

We present results for numerical dispersion for SG-2, SG-4, CONV-2, and CONV-4, which

are discussed above, OPT-2 (the optimally accurate O(2,2) predictor-corrector scheme of Geller
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and Takeuchi, 1998), and OPT-4 (the optimally accurate O(2,4) predictor-corrector scheme of

Hirabayashi et al., 2006). Appendix B of Hirabayashi et al. (2006) gives analytic results for the

stability limit and numerical dispersion for CONV-2, CONV-4, OPT-2, and OPT-4. As shown

above, the numerical dispersion and stability limit of SG-2 will be identical to that of CONV-

2. Following Hirabayashi et al. (2006), and omitting intermediate steps, we obtain the following

dispersion relation and stability limit for SG-4:

C ≤
√

36/49≈ 0.857 (32)

2A−2 = (C2/576)(2G−108F +1566E−1460) (33)

βSG4 = [1/(k∆t)] cos−1 [1+(C2/576) (−730+783E−54F +G)
]

≈ β
(
1+C 2k2∆x2/24+ · · ·) (34)

We summarize the stability limits and lowest order numerical dispersion of phase velocity in

Table 1. The exact dispersion relations for the various schemes are given in Table 2. Table 1 shows

that the numerical dispersion of SG-2/CONV-2, CONV-4, and SG-4 is O(∆x2), while OPT-2 and

OPT-4 have errors of O(∆x4). It might surprise some readers that some schemes with a fourth

order spatial operator (CONV-4, SG-4) have O(∆x2) numerical dispersion, while a scheme with a

second order spatial operator (OPT-2) has O(∆x4) numerical dispersion. However, the explanation

is simple (see Hirabayashi et al., 2006 for details). The order of error of the numerical dispersion

is controlled by the cancellation (or non-cancellation) of the respective errors of the spatial and

temporal operators, rather than by the individual error of each of these operators. The optimally

accurate schemes are derived using the criterion of Geller and Takeuchi (1995), which minimizes
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the numerical dispersion of phase velocity by defining the spatial and temporal operators so that

their errors cancel to lowest order.

Results for the numerical dispersion of the phase velocity for four different values of the Courant

number (C = 0.1, 0.3, 0.5, and 0.8) are shown in Fig. 1. The horizontal axis of each panel of Fig. 1

is the grid parameter (the reciprocal of the number of grid points per wavelength), defined by

Grid parameter = ∆x/λ = k∆x/(2π), (35)

where λ is the wavelength. The vertical axis in each panel of Fig. 1 is the percentage error of the

phase velocity, computed using the exact equations in Table 2. The error of CONV-2 (and that of

SG-2, which is rigorously equal to CONV-2) is the largest among all the schemes in the first three

panels, but is somewhat smaller that that of CONV-4 and SG-4 in the last (C = 0.8) panel. Note that

as C increases, the error of CONV-2 (and SG-2) decreases, which is fully consistent with the factor

of (1−C 2) in Table 1. In contrast, the error of CONV-4 and SG-4 changes signs as C increases

from 0.1 to 0.5, and further increases in magnitude as C increases to 0.8. The performance of SG-4

and CONV-4 is almost identical, which is expected on the basis of the fact that, as shown in Table 1,

the errors are the same to lowest order, but SG-4 is slightly worse. The difference between CONV-4

and SG-4 decreases as C increases. It is notable that OPT-2 and OPT-4 significantly outperform the

other schemes for C = 0.5 and 0.8.

The question of how much accuracy is required depends on each user’s need for each particular

application. However, in actual travel time data, a difference of 0.1 percent (5 ms in 5 s in explo-

ration, or 1 s in 1000 s in global studies) can definitely be resolved. Thus if we want to compare FD

synthetics to real data we will probably require a numerical dispersion error which is about one or-
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der of magnitude smaller, namely 0.01 percent. The horizontal scale in panels (c) and (d) of Fig. 1

shows that even OPT-2 and OPT-4 require about 20-25 grid points per wavelength to reach this

level of accuracy, while the other schemes require on the order of 100 grid points per wavelength.

Of course if the user decides that a lesser level of accuracy is acceptable a commensurately lower

value of the grid parameter can be used.

TRADEOFF BETWEEN ACCURACY AND CPU TIME

As the error of the numerical phase velocity can be defined only for a homogeneous medium,

we need a measure of accuracy that can be used for an arbitrarily hetereogeneous model. We use

the relative solution error (expressed as a percentage), defined as follows:

relative r.m.s. error = 100×
(

∑N
i=1(u

j
i − [u(0)] j

i )
2

∑N
i=1([u(0)] j

i )2

)1/2

, (36)

where N is the number of nodes, u j
i is the calculated displacement at the ith node at the jth time

step, and [u(0)] j
i is the reference displacement at the ith node at the jth time step. Geller and

Takeuchi (1995) showed that if the eigenfrequencies of the normal modes of vibration were to

be calculated using optimally accurate operators—i.e., operators designed to minimize the rela-

tive solution error—the error of the calculated eigenfrequencies would also be minimized. Thus

the criterion of minimization of the relative solution error is the logical extension to the case of a

heterogeneous medium of the criterion of minimization of phase velocity dispersion for a homoge-

neous medium.

In the numerical examples in this paper we use the exact (analytic) solution as the reference

displacement, but for heterogeneous models a numerical solution obtained with a fine spatial grid
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and a small time step can be used. In this paper we use the data at the final time step in evaluating

eq. (36). Because data from all grid points are used in our evaluation of eq. (36), a robust measure

of accuracy is obtained.

The most important datum to the user is not the grid parameter required to achieve a given level

of accuracy, but rather the CPU time required. We now consider the performance of the various

numerical schemes discussed in this paper for the case of a 1-D homogeneous medium with a length

of 3 km and with periodic boundary conditions. The wave propagation velocity is β = 2 km/s, and

the density is ρ = 1000 kg/m3. The final time step is t=11.5 s in all calculations. The purpose of this

numerical test is not to present a detailed evaluation of all of the methods discussed in this paper,

but rather to show that SG schemes are marginally inferior to conventional one-step FD schemes,

and are considerably inferior to optimally accurate FD schemes.

Results for four different Courant numbers are shown in Fig. 2. In addition to the schemes

shown in Fig. 1, we also present results for the one-step counterpart scheme to SG-2 (CSG-2,

eq. 15) and the one-step counterpart scheme to SG-4 (CSG-4, eq. 25). We present results for

the same four values of the Courant number shown in Fig. 1. The best performing schemes are

those that require the least CPU time to achieve a given level of accuracy, or, equivalently, those

which achieve the most accurate calculations for a given expenditure of CPU time. Thus the best

performing schemes are those whose curves lie closest to the lower left-hand corner of each panel.

In all cases the optimally accurate schemes outperform all of the non-optimally accurate schemes

by a substantial margin. As expected from the basic equivalence of CSG-2, SG-2 and CONV-2,

the performance of these schemes is almost the same. This is also the case for CSG-4, SG-4 and

CONV-4.
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For the case of C = 0.5, for example (Fig. 2c), the OPT schemes achieve a 100-fold improve-

ment in accuracy for a comparable expenditure of CPU time. The results of Geller and Takeuchi

(1998) and Takeuchi and Geller (2000) show that the improvement factor for 2-D or 3-D will be

considerably greater than that for 1-D, although the numerical values will always depend on the

details of the test. Such significant factors of improvement in the cost-performance ratio suggest

that it is worthwhile to make the investment in developing and using optimally accurate FD codes

in cases where accuracy of the calculations is an important issue. As the results in Fig. 2 are based

on the error at the final time step, whereas those in the above cited papers were based on the aver-

age error throughout the time window of the synthetics, the numerical values of the improvement

factors reported here are somehat larger.

If taken at face value, Fig. 2 appears to show that OPT-4 is preferable to OPT-2. However,

the results in Fig. 2 are for the case of a homogeneous model, whereas real FD calculations will

always be made for a heterogeneous model with sharp lithological discontinuities. Hirabayashi

et al. (2006) have conducted 1-D evaluations for models with sharp lithological discontinuities,

and have shown that for such cases the boundary error of the OPT-4 operators is quite large. As

a result, OPT-2 outperforms OPT-4 for such cases. The ease of programming an OPT-2 scheme,

as compared to OPT-4, and the ability of OPT-2 to handle inter-node lithological discontinuities

(Mizutani, 2001) also argue in favor of OPT-2. In any case, it seems clear that optimally accurate

schemes should be used in preference to non-optimally accurate schemes.

APPLICABILITY TO HETEROGENEOUS PROBLEMS

Since the primary applications of numerical methods for computing synthetic seisimograms are

for heterogeneous media in 2-D and 3-D, we discuss the applicability of the above results to such
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problems. We also present a numerical example showing the application of optimally accurate FD

schemes to a realistic 2-D case.

First, let us consider how SG schemes for a general heterogeneous medium can be transformed,

by a trivial extension of the above derivation, to eliminate stress, thereby obtaining a scheme in

which the displacement is the only dependent variable. The key point to the derivation is that for

the heterogeneous 2-D and 3-D cases, as for the homogeneous 1-D case, the spatial and temporal

derivatives of the stress appear without being multiplied by elastic constants (just as they do in the

differential equations, eqs. 4 and 5, or the FD equations, eqs. 9, 10, 12, and 13). That being the case,

stress can be readily eliminated by taking additional finite differences, as is done above, to obtain

a counterpart FD scheme, in which displacement is the only dependent variable. Such counterpart

FD schemes have a different form than eqs. (15) or (25), but are basically the same. The exact

form of the counterpart FD scheme is not particularly important. Rather what is important is that

the counterpart schemes can readily be shown not to satisfy the criterion for optimally accurate FD

operators (Geller and Takeuchi, 1995).

In contrast, the scheme presented by Takeuchi and Geller (2000) allows optimally accurate

calculations to be made for an arbitrarily heterogeneous elastic medium in 2-D or 3-D. The basic

building block of this scheme is the optimally accurate FD scheme for a region which is either

homogeneous or has relatively mild velocity gradients. The operator for the general heterogeneous

medium is then constructed by “overlapping” the operators for each of the regions (see, for example,

Fig. 4, p.464, of Geller and Takeuchi, 1995). We present a numerical example. Fig. 3 shows a 2-

D elastic P-SV model, and Fig. 4 shows synthetics computed for this model using the optimally

accurate scheme of Takeuchi and Geller (2000).
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DISCUSSION

As shown above, on the basis of both theory and numerical experiments, staggered-grid

schemes are basically equivalent (but slightly inferior) to non-optimally accurate one-step schemes.

If one looks at the history of FD methods, some of the early one-step “displacement only” schemes

had substantial problems (instability, inability to handle internal discontinuities, free external

boundaries, or gradients in material properties), and the use of staggered-grid methods in pref-

erence to the flawed one-step schemes was sensible. However, optimally accurate schemes (Geller

and Takeuchi, 1998; Takeuchi and Geller, 2000; Hirabayashi et al., 2006) do not suffer from the

problems of earlier one-step schemes, while, as shown in this paper and elsewhere, optimally ac-

curate schemes substantially outperform non-optimally accurate schemes. The use of optimally

accurate schemes is thus clearly indicated, particularly in cases such as 3-D prestack reverse time

migration, where computational accuracy and computational efficiency are important issues.
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APPENDIX

In this appendix we present a summary of key results for an optimally accurate O(2,2) FD

scheme (OPT2) at interior points of a homogeneous medium (after Geller and Takeuchi, 1998). We

write the FD equation of motion in the time domain as follows:

(AmMnN −KmMnN)cnN = fmM, (37)

where A is the temporal FD operator and K is the spatial FD operator. We consider a homogeneous

1-D problem with a temporal grid interval ∆t and a spatial grid interval ∆x.

The format of the operators all follow that of A, as given below:

A =

t +∆t A(n−1)(N+1)nN An(N+1)nN A(n+1)(N+1)nN

t A(n−1)NnN AnNnN A(n+1)NnN

t−∆t A(n−1)(N−1)nN An(N−1)nN A(n+1)(N−1)nN

x−∆x x x+∆x

. (38)
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We use the superscript 0 to denote the conventional operators, which are as follows:

A0 =
( ρ

∆t2

)
×

t +∆t 1

t −2

t−∆t 1

x−∆x x x+∆x

K0 =
( µ

∆x2

)
×

t +∆t

t 1 −2 1

t−∆t

x−∆x x x+∆x

,

(39)

where blank spaces in the FD stencils denote zeros.

Omitting the details of the derivation, the optimally accurate operators are found to be as fol-

lows:

A =
( ρ

∆t2

)
×

t +∆t 1/12 10/12 1/12

t −2/12 −20/12 −2/12

t−∆t 1/12 10/12 1/12

x−∆x x x+∆x

K =
( µ

∆x2

)
×

t +∆t 1/12 −2/12 1/12

t 10/12 −20/12 10/12

t−∆t 1/12 −2/12 1/12

x−∆x x x+∆x

. (40)

Note that if we sum horizontally for A and vertically for K we obtain the conventional operators

27



in eq. (39). An intuitive explanation of eq. (40) is that we smear out the discretized second time

derivative operator in space, and smear out the discretized second spatial derivative operator in

time, so that the numerical dispersion (error of the phase velocity) of the discretized equation of

motion is zero to second order in ∆t2 and ∆x2.

The optimally accurate operator (AmMnN −KmMnN) given by eq. (40) has multiple non-zero

elements for time t + ∆t. If we use this operator in a time-marching scheme to solve eq. (37), we

will have obtained an implicit scheme. To obviate the need to solve a system of simultaneous linear

equations at each time step, we use a predictor-corrector scheme as follows. First we predict the

wavefield at the next time step using the conventional operators A0 and K0 defined in eq. (39):

(
A0−K0

)
c0 = f, (41)

where c0
nN+1, the predicted wavefield at time t +∆t, is obtained from eq. (41) by solving an explicit

scheme.

Next we compute δc, the correction to the displacement at time t + ∆t, using the first order

Born approximation. We denote the difference between the conventional operators A0, K0 and the

modified operators A, K by δA, δK respectively. To obtain the correction we solve:

(
A0−K0

)
δc =− (δA−δK)c0, (42)

where
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δA =
( ρ

∆t2

)
×

t +∆t 1/12 −2/12 1/12

t −2/12 4/12 −2/12

t−∆t 1/12 −2/12 1/12

x−∆x x x+∆x

(43)

δK =
( µ

∆x2

)
×

t + ∆t 1/12 −2/12 1/12

t −2/12 4/12 −2/12

t−∆t 1/12 −2/12 1/12

x−∆x x x+∆x

. (44)

As the l.h.s. of eq. (42) uses the conventional operators, we can compute the value of δc at time

t +∆t by solving an explicit scheme. Note that δcnN = 0 and δcnN−1 = 0 in eq. (42).

We compute the corrected displacement cnN+1 after each time step using c0 computed by eq.

(41) and δc computed by eq. (42):

cnN+1 = c0
nN+1 +δcnN+1. (45)

Finally, before advancing to the next time step we redefine c0:

c0
nN+1 = cnN+1. (46)

Note that we use the displacements given by eq. (46) as the values for c0
nN and c0

nN−1 in eq. (41) at

subsequent time steps.
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Numerical Recipe

The scheme for the predictor step is as follows:

cN+1
n = −cN−1

n

+
(

µ
ρ

∆t2

∆x2

)
cN

n−1

+
(

2− 2µ
ρ

∆t2

∆x2

)
cN

n

+
(

µ
ρ

∆t2

∆x2

)
cN

n+1

+
(

∆t2

ρ
FN

n

)
, (47)

where cN
n and FN

n are the displacement and the body force at x and t respectively, and cN+1
n is the

unknown displacement at t +∆t to be determined; the other quantities in eq. (47) are all known.

The explicit discretized equation for the correction step (eq. 42) is as follows (note that δcN
n =

δcN−1
n = 0):

δcN+1
n =

(
− 1

12
+

µ
12ρ

∆t2

∆x2

)[
cN+1

n−1 −2cN
n−1 + cN−1

n−1

]

+
(

2
12
− 2µ

12ρ
∆t2

∆x2

)[
cN+1

n −2cN
n + cN−1

n

]
+
(
− 1

12
+

µ
12ρ

∆t2

∆x2

)[
cN+1

n+1 −2cN
n+1 + cN−1

n+1

]
(48)

Finally, after computing δcN+1
n for all nodes, and before proceeding to the next time step, we

combine eqs. (48) and (47) to obtain the net (corrected) displacement:

cN+1
n ← cN+1

n +δcN+1
n , (49)
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where we use← to denote a replacement rather than a mathematical equality.
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Table 1. Stability limit and lowest order numerical dispersion

Scheme C < βnum = β×

SG-2/CONV-2 1.000
[
1− (1−C 2)k2∆x2/24+ · · ·]

CONV-4 0.866
[
1+C 2k2∆x2/24+ · · ·]

SG-4 0.857
[
1+C 2k2∆x2/24+ · · ·]

OPT-2∗ 1.000
[
1− (4−5C +C 2)k4∆x4/720+ · · ·]

OPT-4∗ 1.031
[
1−C 4k4∆x4/720+ · · ·]

∗ These values are for the ordinary stability zone. There is also a second stability zone in the

approximate range 1.2593 < C < 1.6279 for OPT-4, and a second stability point at C = 2 for

OPT-2 (see Geller et al., 2006, and Hirabayashi et al., 2006, for details).
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Table 2. Exact dispersion relations

Scheme 2A−2 =

SG-2/CONV-2 C 2(2E−2)

CONV-4 (C2/12) (−2F +32E−30)

SG-4 (C2/576) (2G−108F +1566E−1460)

OPT-2 C 2(2E−2)+(6−8E +2F)(C4/12−C 2/12)

OPT-4 (C2/12) (−30+32E−2F)

−(C 2/1080) (310−472E +200F−40G+2H)

+(C 4/1728) (1414−1984E +632F−64G+2H)

Note that A = cosω∆t, E = cosk∆x, F = cos2k∆x, G = cos3k∆x, and H = cos4k∆x.
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Figure 1: Numerical dispersion for the various schemes considered in this paper for four values

of the Courant number (defined in eq. 29), C = 0.1, 0.3, 0.5, and 0.8. The horizontal axis is the

grid parameter (number of grid intervals per wavelength), λ/∆x = 2π/(k∆x). In almost all cases

the optimally accurate schemes (OPT-2 and OPT-4) are significantly more accurate than the other

schemes, but OPT-2 is comparable to CONV-4 and SG-4 for C = 0.1.
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Figure 2: Tradeoff between CPU time and relative r.m.s. error for the various schemes considered

in this paper for four values of the Courant number (defined in eq. 29): (a) C = 0.1, (b) C = 0.3, (c)

C = 0.5, (d) C = 0.8. The schemes considered fall broadly into three classes: non-optimally accu-

rate second order (SG-2, CONV-2, CSG-2), non-optimally accurate fourth order (SG-4, CONV-4,

CSG-4), and optimally accurate (OPT-2 and OPT-4). The optimally accurate schemes significantly

outperform all of the other schemes. There is no significant difference between staggered grid

schemes and other non-optimally accurate schemes of the same order.
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Figure 3: Heterogeneous 2-D elastic model used to generate the synthetic seismograms in Fig-

ure 4. The medium is a Poisson solid (λ = µ). For simplicity a constant value of density was

used, although our methods can handle arbitrarily heterogeneous density as well as arbitrarily het-

erogeneous elastic constants. The upper (a) and lower (b) figures show the P-wave velocity and

the S-wave velocity respectively. The source (shown by the triangle) is a point force with Ricker

wavelet time dependence and a center frequency of 25 Hz, applied at the interface between the

second and the third layers, with force direction parallel to the interface. The grid spacing is con-

stant throughout the medium. The number of grid points per wavelength (based on the slowest

S-wave velocity) is 19.0 and the Courant number (based on the fastest compressional velocity) is

C = Vp∆t/∆z = 0.83. The numerical operators at the boundaries are derived by “overlapping,” as

explained by Geller and Teakeuchi (1995) and Takeuchi and Geller (2000). Free surface conditions

are imposed at all outer boundaries. Dipping interfaces at internal boundaries are approximated by

stair-case boundaries.
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Figure 4: Snapshots of P-SV synthetic seismograms for the 2-D model in Fig. 3: (a) the horizontal

component and (b) the vertical component of the displacement at 0.6 (s) after the source is excited,

computed using optimally accurate FD operators (Takeuchi and Geller, 2000).
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