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Abstract

Ž .We compute complete including both body and surface waves synthetic seismograms for laterally and vertically
Ž .heterogeneous Earth models using the Direct Solution Method DSM . We use the optimally accurate modified operators

wderived by Geller and Takeuchi Geller, R.J., Takeuchi, N., 1995. A new method for computing highly accurate DSM
x wsynthetic seismograms. Geophys. J. Int. 123, 449–470 and extended to spherical coordinates by Takeuchi et al. Takeuchi,

N., Geller, R.J., Cummins, P.R., 1996. Highly accurate P-SV complete synthetic seismograms using modified DSM
x woperators. Geophys. Res. Lett. 23, 1175–1178 and Cummins et al. Cummins, P.R., Takeuchi, N., Geller, R.J., 1997.

Computation of complete synthetic seismograms for laterally heterogenous models using the Direct Solution Method.
xGeophys. J. Int. 130, 1–16 for 1- and 3-D models, respectively. In this study we greatly reduce the CPU time by treating the

Ž .laterally heterogeneous structure as a perturbation to a spherically symmetric model i.e., using the Born approximation .
Ž . Ž .Note, however, that 1 our methods do not require the use of the Born approximation and 2 the reference model for the

Born approximation is not required to be spherically symmetric. The synthetic seismograms in this paper are computed using
the first-order Born approximation. However, accuracy can be greatly improved by using higher order terms of the Born
series; theoretical results are presented in this paper, and some preliminary numerical examples are presented in this volume

wby Igel et al. Igel, H., Takeuchi, N., Geller, R.J., Megnin, C., Bunge, H.P., Clevede, E., Dalkolmo, J., Romanowicz, B.,´ ´ ´
x1998. The COSY project: verification of global seismic modeling algorithms, Phys. Earth Planet. Inter., this issue . q 2000
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1. Introduction

One of the major goals of seismology is to invert
Ž .complete including both body and surface waves

waveform data to determine 3-D Earth structure.
Accurate and efficient computation of synthetic seis-
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mograms and their partial derivatives is necessary to
perform such an inversion. We derived optimally

Žaccurate numerical operators Geller and Takeuchi,
.1995 for computing synthetic seismograms for both

Žspherically symmetric Earth models Cummins et al.,
.1994a; Takeuchi et al., 1996 and 3-D heterogeneous

Ž .Earth models Cummins et al., 1997 . Using these
modified operators improves the accuracy of syn-
thetic seismograms by about 10–30 times without

Ž .increasing the CPU time Geller and Takeuchi, 1995 .
We have already used these methods to compute

Žcomplete synthetic seismograms for a 2-D axisym-
. Žmetric laterally heterogeneous Earth model Cum-

.mins et al., 1997 . In this paper, we compute com-
plete synthetic seismograms for a 3-D heterogeneous
Earth model using these operators. Prospects for
obtaining accurate 3-D Earth models by using these
operators together with efficient algorithms for

Ž .waveform inversion Geller and Hara, 1993 appear
promising. Note, however, that we do not actually
perform such an inversion in this paper.

As waveform inversion is a moderately non-linear
problem, it is desirable to invert iteratively. Each
iteration should ideally compute synthetic seismo-
grams without any approximations 1 for the 3-D
heterogeneous Earth model obtained by the previous
inversion. In our previous studies, we performed
such iterative linearized inversions using only sur-
face wave data and only upper mantle S-wave struc-

Ž .ture was determined Hara et al., 1991, 1993 . Uti-
Žlization of complete synthetic seismograms includ-

.ing both body and surface waves will make it
possible to invert for whole Earth structure.

2. Theory

2.1. Computation of synthetic seismograms

The basic theory for the Direct Solution Method
Ž . Ž .DSM is given by Hara et al. 1991; 1993 and

1 All methods for computing synthetic seismograms are approx-
imate because they use a finite basis. Here we use ‘approximation’
to denote further approximations such as the infinitesimal wave-
length approximation, Earth flattening transformation, great circle
approximation, or the approximation of treating the 3-D structure
as a weak perturbation to a 1-D model.

Ž .Geller and Ohminato 1994 , and the explicit form of
the matrix operators is given by Cummins et al.
Ž . Ž .1994a,b; 1997 and Takeuchi et al. 1996 . We
present a summary here. See the discussion section

Ž .of Cummins et al. 1997 for a comparison of the
DSM to other methods for computing synthetics for
laterally heterogeneous media.

We compute the synthetic seismograms as fol-
lows. For the solid regions of the Earth model we

Ž .expand the unknown displacement, u x , where i isi

the component of the physical coordinates and x is
Žn.Ž .the position, in terms of vector trial functions C xi

Ž .1FnFN as follows:
N

Žn.u x s c C x , 1Ž . Ž . Ž .Ýi n i
ns1

where the expansion coefficients, c , are the un-n

knowns. The explicit form of the trial functions used
in this paper is given in Section 3.1. The dependent
variable in the fluid regions of the Earth model is a
scalar quantity proportional to the pressure, and scalar

Žtrial functions are used. See Cummins et al. 1994b;
. Ž .1997 , Geller and Ohminato 1994 and Takeuchi et

Ž .al. 1996 for details. The DSM solution would in
principle be exact for a complete basis, but in prac-
tice all methods, including the DSM, use a finite
basis and thus in general have some error.

Ž .Substituting Eq. 1 into the equation of motion,
the DSM obtains the weak form of the equation of
motion in the frequency domain as the following
system of linear equations:

v 2 T Ž0.yHŽ0. csyg , 2Ž . Ž .
where v is the frequency, T Ž0. and HŽ0. are the mass

Žmatrix and stiffness matrix, respectively the latter
includes the effect of anelastic attenuation; Liu et al.,

.1976 , c is the vector of expansion coefficients of
the trial functions, and g is the vector for the

Ž .discretized external force source term. We use the
Ž .modified operators Geller and Takeuchi, 1995 for

these matrix operators. We can define modified oper-
ators for both spherically symmetric Earth models
Ž .Cummins et al., 1994a; Takeuchi et al., 1996 and

Ž3-D heterogeneous Earth models Cummins et al.,
.1997 .

We obtain the solution c, and thus the wavefield
Ž . Ž .u x , by directly solving Eq. 2 . For simplicity, ini

this discussion we consider the case of a single
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earthquake. But in an actual inversion there would be
one force vector g and one solution vector c for
each earthquake. Also, simultaneous inversion for

ŽEarth structure and the CMT centroid and moment
. Žtensor of each event would be necessary e.g., Hara,
.1997 .

Ž .To solve Eq. 2 , one LU decomposition of
Ž 2 Ž0. Ž0..v T yH and one forward- and back-substitu-
tion for each source are required. For a spherically
symmetric model this matrix has a narrow band-
width, but its bandwidth, and hence the computa-
tional requirements, increase greatly for a 3-D het-
erogeneous model.

2.2. Computation of partial deriÕatiÕes

The basic formulation and an efficient algorithm
for computing the partial derivatives were given by

Ž .Geller and Hara 1993 . Their algorithm is optimized
for the general case of a 3-D starting model.

Ž . Ž .Eu x r Em is the partial derivative of the dis-i r l

placement u at a receiver located at x w.r.t. thei r

model parameter m :l
EuU xŽ .i r

Eml

U y1U U2 Ž l . Ž l . 2 Ž0. Ž0.syc v T yH v T yH yŽ . Ž . i

EuU xŽ . Ui r U 2 Ž l . Ž l .sc v T yH z , 3Ž . Ž .i
Eml

Ž 2 Ž0. Ž0..where v T yH and c are the matrix opera-
tors and expansion coefficients for the initial model,
T Ž l . and HŽ l . are the mass and stiffness matrices for

Ž Ž .the l-th model parameter defined as in Eqs. 13 and
Ž . .14 in Geller and Hara, 1993 , y is a discretizedi

unit point single force in the i-th direction at the
receiver x :r

UŽ .1C xŽ .i r
UŽ2.C xŽ .i r

y s , 4Ž ..i ..� 0UŽN .C xŽ .i r

and z , the back-propagated synthetic for a pointi

force in the i-th direction at the receiver, is obtained
by solving the following equation:

U2 Ž0. Ž0.v T yH z syy . 5Ž . Ž .i i

The correspondence between the above formula-
tion and the waveform inversion formulation of

Ž .Tarantola 1984 is discussed by Geller and Hara
Ž .1993 .

2.3. AlternatiÕe algorithm

The above algorithm minimizes the total number
Ž . Ž .of times that Eqs. 2 and 5 must be solved, but this

step is much less computationally intensive for the
spherically symmetric case than for the 3-D case. In
the present paper we therefore use instead the fol-
lowing algorithm which, as shown below in Section
4.4, outperforms the above algorithm for the case of

Ža 1-D starting model which will usually be the
starting model for the first iteration of iterative inver-

.sion .
Ž .The order in which Eq. 5 is evaluated can be

changed as follows:

EuU xŽ .i r

Eml

U y1U U2 Ž l . Ž l . 2 Ž0. Ž0.s yc v T yH v T yH yŽ . Ž .½ 5 i

U

d c
s y , 6Ž .iž /d ml

where d crd m is obtained by solvingl

d c
XŽ l .2 Ž0. Ž0.v T yH syg , 7Ž . Ž .

d ml

where

gXŽ l .s v 2 T Ž l .yHŽ l . c . 8Ž . Ž .
In later sections we will write gXŽk l . to denote the

value of gXŽ l . for the k-th earthquake.

3. Born approximation

We can compute synthetic seismograms for a 3-D
model using the first-order or higher order Born
approximation. All of the numerical examples in this
paper use only the first-order term of the Born series.
Synthetic seismograms calculated using higher order
terms of the Born series are presented in this volume

Ž .by Igel et al. 2000 ; the results seem encouraging.
The higher order Born series may be very useful for
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performing linearized waveform inversion with re-
spect to a 3-D starting model, which would greatly
facilitate iterative linearized inversion for 3-D Earth

Ž .structure Geller and Hara, 1993 .
We express the 3-D model m as the sum of a

‘‘perturbation’’, d m, and a reference model, mŽ0..
For both the numerical examples in this paper and

Ž . Ž0.those in Igel et al. 2000 we define m to be the
spherically symmetric part of the model and d m to
be the 3-D part of the model. For this case m can be
expressed in terms of the basis mŽ l .:

msmŽ0.q d m mŽ l . , 9Ž .Ý l
l

where d ml are the expansion coefficients, which
would be the unknown model parameters in an in-
version for 3-D structure. Even when mŽ0. is not
spherically symmetric, it still will be chosen so that
the system of linear equations has a narrow band-
width. For example, we could choose low-order 3-D
heterogeneous structure up to degree 2 or 4 as mŽ0..

The exact equation of motion for the 3-D hetero-
Ž .geneous model, Eq. 2 , is rewritten as follows:

AŽ0.qdA c Ž0.qc Ž1.qcŽ2.q PPP syg , 10Ž . Ž . Ž .
where AŽ0. and dA, the matrix operators for mŽ0. and
d m, respectively, are given by:

AŽ0.sv 2 T Ž0.yHŽ0. , dAsv 2d Tyd H. 11Ž .
Ž0. Ž . Ž0. Ž1.c in Eq. 10 is the solution for m , and c ,

c Ž2., PPP are the successive terms of the Born series,
Žn. Žwhere c is the correction of order n in d m see

.Hudson and Heritage, 1981 . The Born series itera-
Ž .tively solves Eq. 10 as follows:

AŽ0.cŽ0. s yg
Ž0. Ž1. Ž0.A c s ydA c
Ž0. Ž2. Ž1. 12Ž .A c s ydA c

...
Ž0. Žn. Žny1.A c s ydA c .

Ž . Ž0.To solve Eq. 12 , one LU decomposition of A
is required, and one forward- and backward-substitu-
tion for each successive c Ž i. is required. This is not
computationally intensive as compared to the full LU

Ž Ž0. .decomposition of A qdA . The n-th order Born
approximation, c , is obtained as follows:approx

c sc Ž0.qcŽ1.qc Ž2.q PPP qcŽn. . 13Ž .approx

Ž .Lognonne 1991 and Clevede and Lognonne´ ´ ´ ´
Ž .1996 used a higher order perturbation approxima-
tion to calculate the modes of a laterally heteroge-
neous model, and then computed synthetics by modal
superposition. DSM synthetics calculated using the
first-order Born approximation have been shown to
be equal to those calculated by modal superposition
using the eigensolutions calculated by first-order per-

Ž .turbation theory Geller et al., 1990a,b . It should be
possible to use the same approach to show the
equivalence of the higher order Born series and
modal superposition using the eigensolutions calcu-
lated by higher order perturbation theory.

Ž . Ž .The procedure given in Eqs. 10 – 13 is a stan-
dard approach for iterative solution of simultaneous

Žequations. It is well-known e.g., Isaacson and Keller,
.1966, p. 63 that the condition for convergence of

such a series is that all of the eigenvalues of the
matrix

y1Ž0.A dA 14Ž . Ž .

must have an absolute value of less than one. We
estimate these eigenvalues for our case using the

Žnormal mode basis see Section 2 of Geller and
.Takeuchi, 1995 for a similar derivation . The matrix

Ž .in Eq. 14 can be expressed as follows in the normal
mode basis, where the subscripts p and q denote the
p- and q-th normal modes:

2v d T ydHy1 p q p qŽ0.A dA s . 15Ž . Ž .2 2p q v yvp

If d m is reasonably small, the matrices d H and
Žd T will be diagonally dominant. In that case mak-

ing the approximation of ignoring off-diagonal ele-
.ments , the diagonal elements of the matrix in Eq.

Ž .14 will also be its eigenvalues. The largest diagonal
element, and thus the largest eigenvalue of the ma-

Ž . Ž .trix in Eq. 14 , can be expected when vsRe v :p

y1Ž0.max eigenvaluef A dAŽ .
p p

2Re v d T ydHŽ .p p p p p
f . 16Ž .

2 Im v Re vŽ . Ž .p p
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From perturbation theory and the definition of the
attenuation factor of modes, Q , the following twop

Žapproximate relations can be obtained see, for ex-
.ample, Section 2.1 of Geller and Takeuchi, 1995 :

Re vŽ .p2v d T ydH fy2v dv , Im v f ,Ž .p p p p p p p p 2Qp

17Ž .

where dv is the difference between the eigenfre-p
Žquency of the p-th mode for the full model ms

Ž0. . Ž Ž0..m qd m and the reference model m , and Qp

is the attenuation factor of the p-th mode. Substitut-
Ž . Ž .ing Eq. 17 into Eq. 16 and using the relation
Ž .v fRe v , the approximate general condition forp p

Ž .convergence of Eq. 13 is

dvp
2Q -1 18Ž .p

vp

for all modes.
Ž .Eq. 18 will frequently not be satisfied for realis-

tic Earth models, but we can use a standard con-
trivance to obviate this difficulty. If we include an
imaginary part of the frequency, v, we can incorpo-

Žrate additional artificial anelastic attenuation Phin-
. Ž .ney, 1965 , and thus can satisfy Eq. 18 . After

transforming the resulting solution into the time do-
main, we then remove the excess attenuation by
multiplying the solution by a growing exponential.
Quantifying the numerical error of the synthetics
obtained by the higher order Born series for a model
where realistic treatment of anelastic attenuation is

Ž .used e.g., a standard linear solid, Liu et al., 1976 is
an important topic for future work.

3.1. Explicit formulation for the first-order Born
approximation

The explicit procedure used to calculate synthetics
using the first-order Born approximation is as fol-
lows. First we compute exact synthetic seismograms

Ž0. Ž .for the 1-D model m by solving Eq. 2 . We obtain
the expansion coefficients cŽ0. and the wavefield
Ž0.Ž .u x . Next we compute partial derivativesi

Ž . Ž . Ž0.Eu r Em w.r.t. the initial model m using Eq.i l
Ž . BŽ .3 for all l. The wavefield, u x computed for thei

3-D model using the first-order Born approximation
can be expressed as follows:

EuiB Ž0.u x su x q d m . 19Ž . Ž . Ž .Ýi i l
Emll

This procedure can easily be generalized to the
higher order Born series.

All computations are carried out in spherical coor-
Ž .dinates r,u ,f . The trial functions used in the ex-

Ž Ž ..pansions of the wavefield Eq. 1 are the same as
Žthose used in our previous papers Cummins et al.,
.1994a,b, 1997; Takeuchi et al., 1996 . Here we show

the vector trial functions for the solid part of the
Ž .medium. We use linear spline functions X r fork

the vertically dependent part of the trial functions
and vector spherical harmonics S1 , S2 and T ,lm lm lm

defined as follows, for the laterally dependent part of
the trial functions:

S1 u ,f s Y m u ,f ,0,0Ž . Ž .Ž .ll m ll

1 EY m u ,f 1 EY m u ,fŽ . Ž .ll ll2S u ,f s 0, ,Ž .ll m ž /L Eu L sin u Ef

T u ,fŽ .ll m

1 EY m u ,f 1 EY m u ,fŽ . Ž .ll ll
s 0, ,y ,ž /L sin u Ef L Eu

20Ž .

where the Y m are fully normalized surface sphericalll

Ž . (harmonics Press et al., 1986 and Ls ll llq1 .Ž .
The explicit form of the trial functions is as

follows:

C Žk ll m1. r ,u ,f sX r S1 u ,fŽ . Ž . Ž .k ll m

C Žk ll m2. r ,u ,f sX r S2 u ,fŽ . Ž . Ž .k ll m

C Žk ll m3. r ,u ,f sX r T u ,f . 21Ž . Ž . Ž . Ž .k ll m

Ž .Hereafter, we denote the set of indices k ll ma

Ž .by the pointer n and the total number of trial
Žfunctions including the scalar trial functions for the

.liquid part of the medium by N.

3.2. Model parameterization

In this paper, we consider only an isotropic
medium, but the extension to the anisotropic case is
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Žstraightforward. As we consider a low-order long
.wavelength laterally heterogeneous model:

Ž .0r rŽ .r r ,u ,fŽ .
Ž .0l r ,u ,fŽ . s l rŽ .
Ž .0m r ,u ,fŽ . m rŽ .

gr rŽ .f

g gl rŽ .q Y u ,f , 22Ž . Ž .fÝ f
f , g gm rŽ .f

where r is the density, l and m are the Lamé
constants, and Y g is a fully normalized surfacef

spherical harmonic of angular order f and azimuthal
order g. Note that for a 3-D starting model the first

Ž .term on the r.h.s. of Eq. 22 would be a function of
Ž .r,u ,f , rather than r alone.

The depth dependence for each harmonic can be
parameterized as follows, for example:

gr rŽ .f P dk h1
gl rŽ . Q ds d m x r , 23Ž . Ž .f Ý k h2f g k h k

k ,hg R dm rŽ . k h3f

Ž . Žwhere x r is a spline not necessarily the same ask
Ž .. XX in Eq. 21 , P , Q , R are constants, and dk k k k hh

is a Kronecker-delta. Hereafter we denote the expan-
sion coefficients d m as d m , where l is a pointerf g k h l

Ž .to the set of indices f , g,k,h . The extension to
Žother parameterizations e.g., a block-wise parame-

. Ž .terization is straightforward Geller and Hara, 1993 .
However, if, as in this paper, we want to compute
synthetics for a given 3-D heterogeneous structure
without performing an inversion, we use the vertical
dependence of each harmonic of the 3-D model as

Ž g g g . Ž .the vector r , l , m in Eq. 22 rather than thef f f
Ž .representation in Eq. 23 .

3.3. Explicit form of matrix operators

Ž0. Ž0. Ž .As the matrix operators, T and H in Eq. 3
Ž l . Ž l . Ž .and the matrix operators, T and H , in Eq. 3

were derived in our previous papers, we do not give
them explicitly here. T Ž0. and HŽ0. are matrix opera-
tors for the spherically symmetric initial model whose

Ž0.Ž .density and Lame constants are, respectively r r ,´
Ž0.Ž . Ž0.Ž . Ž Ž ..l r and m r see Eq. 22 . The explicit form

Ž .of the operators is given by Takeuchi et al. 1996
Ž .for the P-SV case, and by Cummins et al. 1994a

for the SH case. T Ž0. and HŽ0. are banded matrices
Žwith narrow bandwidth 7 for the P-SV case and 3

.for the SH case .
The matrix operators, T Ž l . and HŽ l ., are equal to

the matrix operators T and H for the 3-D heteroge-
neous model whose density and Lame constants are´

P dr r,u ,fŽ . k h1

gQ dl r ,u ,fŽ . s x r Y u ,f . 24Ž . Ž . Ž .k h2 k f

R dm r ,u ,fŽ . k h3

The explicit form of these matrix operators for an
arbitrary 3-D heterogeneous model is given by Cum-

Ž .mins et al. 1997 .
As we use vector spherical harmonic trial func-

tions and surface spherical harmonics for the hori-
zontal dependence of the trial functions and the 3-D

Ž Ž . Ž ..model, respectively see Eqs. 21 and 22 , most of
the elements of T Ž l . and HŽ l . are zero for a low-order
model because of the well-known selection rules for
coupling between harmonics. Also, as we use linear
spline trial functions, X , and splines, x , for thek k

vertical dependence of the trial functions and Earth
Ž Ž . Ž ..model, respectively Eqs. 21 and 23 , most of the

elements of T Ž l . and HŽ l . that could be non-zero
according to the selection rules for the spherical
harmonics are zero due to the selection rules for the
splines. These bases for the trial functions and model
parameterization thus lead to sparse banded matrices
for a long wavelength laterally heterogeneous model.

4. Numerical examples

4.1. Examples of synthetic seismograms

The model used in the computations is the COSY
Ž .model Bunge et al., 1996; Igel et al., 2000 up to

degree-6. The detailed parameters of this model can
Žbe obtained via the Internet http:rrwww.itg.

.cam.ac.ukrcosyr . The velocity anomaly maps for
three selected depths are shown in Fig. 1. The

Žanomaly is plotted w.r.t. isotropic PREM Dziewon-
.ski and Anderson, 1981 .

We show examples of synthetic seismograms
computed using the first-order Born approximation
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Ž .Fig. 1. S-velocity anomaly map view for the degree-6 model
Ž . Ž .used in the computations a at surface, b at 1416 km depth and

Ž .c at CMB. The color scale is percentage of the spherically
averaged model.

w.r.t. a spherically symmetric model. We show the
Ž .transverse component f-component of synthetics

computed using only the toroidal basis functions, and
neglecting toroidal–spheroidal coupling. This ap-
proximation is not required by our methods, but was

Fig. 2. Cross-section of the S-velocity anomaly on the great circle
including the source and the receiver. The solid line shows the
raypath for S , and the dashed line shows the raypath for SS.dif

The color scale is percentage of the spherically averaged model.

adopted here to reduce CPU time. The COSY model
is purely elastic, but, as discussed above, we intro-
duce artificial attenuation by adding an imaginary
component to v; this is then removed in the time
domain by multiplying by a growing exponential.

A cross-section of the velocity structure on the
great circle that includes the source and the receiver
is shown in Fig. 2. In this source–receiver geometry,
the raypaths for S and sS go through a strongdif dif

high velocity anomaly at the CMB, and the raypaths
for the SS and sSS phases go through primarily low
velocity regions.

We show synthetic velocity seismograms for a
source at 100 km depth in Fig. 3. The source is a

Fig. 3. Velocity synthetic transverse component seismograms
Žincluding both body and surface waves for a shallow 100 km

.depth source. The dark line shows the synthetic for 3-D model,
and the light line show the synthetic for the 1-D model.
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Fig. 4. Body wave parts of transverse component velocity syn-
Ž .thetic seismograms for a deep 600 km depth event. The dark line

shows the synthetic for 3-D model, and the light line show the
synthetic for the 1-D model.

point moment tensor with a horizontal strike–slip
mechanism and step function time dependence. The
epicentral distance is 1358, and the frequency range
is 32–8000 s. A causal filter with a corner of 20
mHz was used. As one would intuitively expect, Sdif

is advanced relative to the 1-D synthetic, whereas SS
is delayed. A quantitative comparison to the results

Ž .of 3-D ray tracing see Section 4.2 shows that the
travel time anomalies for these body wave phases are
correctly simulated.

Next, we show velocity synthetic seismograms for
Ž .body waves excited by a deep 600 km event with a

strike–slip mechanism at an epicentral distance of
Ž .908 Fig. 4 . The frequency range is 16–8000 s. A

low pass filter with a corner of 40 mHz is used. As
expected for accurate synthetic seismograms, sharp
onsets for each phase are clearly visible both for the
3-D and spherically symmetric models.

4.2. Linearity check

As is well-known, the Born approximation breaks
down as the perturbation becomes larger. As a partial
check of the accuracy of the first-order Born approx-

Žimation, we compare the phase shift essentially
.equivalent to the change in travel time of the syn-

thetics to travel time estimates from ray tracing
calculations. We keep the spatial pattern of the COSY
model fixed, but vary the amplitude of the laterally
heterogeneous structure.

The phase shift is measured by cross-correlating
the 3-D synthetics and the synthetics for the 1-D

Žreference model. We choose an isolated phase direct
.S at 458 for an earthquake at 600 km depth for this

comparison. Fig. 5 shows the predicted travel time
Ž . Žanomaly from ray tracing and ‘‘observed’’ from

.the cross-correlation phase shift as a function of the
amplitude of the heterogeneity. The first-order Born
approximation is a good approximation when the
perturbation is weak, but breaks down when a phase
shift of over pr2 occurs. Fig. 5 shows that the
accuracy of the Born approximation is frequency

Ž .dependent e.g., Hudson and Heritage, 1981 . Itera-
tive inversion for a 3-D Earth model should therefore
start by using the long period components of the
dataset and gradually be extended to shorter period
data. It might be possible to further improve the
results in Fig. 5 by further increasing the imaginary
part of v, but we have not yet tested this possibility.
Also, we have not evaluated the accuracy of the
higher order Born approximation.

Fig. 5. Comparison of travel time anomaly predicted by 3-D ray
tracing and ‘‘observed’’ by cross-correlation between Born ap-
proximation 3-D synthetics and 1-D synthetics. Travel time

Žanomalies are plotted as a function of the average amplitude the
ratio between the travel time anomaly and the absolute travel time

. Ž .calculated by ray theory of the heterogeneity on the raypath. a
The phase shift for synthetics filtered by a low pass filter with a

Ž .corner of 20 mHz. b The phase shift for synthetics filtered by a
low pass filter with a corner of 40 mHz. As expected, the

Ž .accuracy is better for lower frequencies a than for higher fre-
Ž .quencies b .
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Table 1
Parameters for numerical test

Trial functions Ns N N 13,600,000h v

Horizontal N 17,000h

Vertical N 800v

Earthquakes K 30
Model parameters Ls L L 4800h v

Horizontal L 480h

Vertical L 10v

Stations P 18

(4.3. Computational requirements present computa-
)tion

4.3.1. CPU time
The CPU times for the above computations are 13

h for the 32–8000 s band and 100 h for the 16–8000
Ž .s band on an UltraSPARC 170 MHz . Further opti-

mization seems to be possible. For example, we use
the same grid spacing in the vertical direction for all
angular orders, but efficiency can be improved by
using coarser gridding for larger ll to keep the
number of nodes per wavelength more or less con-
stant.

4.3.2. Memory
The required memory is about 60 Mbytes for the

32–8000 s band and 220 Mbytes for the 16–8000 s
Ž 2 Ž0. Ž0..band. Both the N=N matrix v T yH and

the LU decomposition of this matrix have a very
Žnarrow bandwidth Cummins et al., 1994a; Takeuchi

.et al., 1996 . As is well-known, for a spherically
Ž 2 Ž0.symmetric model the matrix operators v T y

Ž0..H for coupling between different angular orders
or azimuthal orders are zero. Furthermore, the matrix
operators depend only on ll and not m. We can

Ž . Ž .therefore evaluate Eqs. 6 – 8 separately for each ll
and m and store gXŽ l . and d crd m only for thel

Ž . Ž 2 Ž l . Ž l ..present ll ,m pair. The elements of v T yH
Ž .in Eq. 8 can be discarded after they are used.

Parallelization is straightforward if the required
memory does not exceed the capacity of a single
processor, as the computation for each frequency can
be assigned to a single processor. The memory re-
quirements will exceed the capacity of a single pro-

Ž .cessor if Eq. 2 is solved exactly for a 3-D model. A
Žblock-wise algorithm e.g., Golub and Van Loan,

.1989 can be used for this case. Cummins et al.

Ž .1997 used such an algorithm for a 2-D axisymmet-
ric model.

(4.4. Computational requirements waÕeform inÕer-
)sion

We estimate the CPU time that would be required
for waveform inversion w.r.t. a spherically symmet-
ric model, which will usually be the first step of an
iterative inversion. For simplicity, we consider only
the toroidal component and neglect toroidal–
spheroidal coupling. We compare the required CPU

Ž Ž . Ž ..time using the 3-D algorithm Eqs. 3 and 5 and
Ž Ž . Ž ..the alternative algorithm Eqs. 6 – 8 . The parame-

ters of the hypothetical inversion are shown in Table
1.

The unit CPU times for the various operations are
shown in Table 2. The first three lines of Table 2
show that the ratios of the CPU times for the LU
factorization, complete forward- and back-substitu-
tion, and sparse multiplication are roughly 2.3:1:1. In
contrast, for the laterally heterogeneous starting

Ž . Žmodel used by Geller and Hara 1993 their Table
.2 , the respective CPU times had the ratio 3800:24:1.

Because only one or two LU factorizations are per-
formed, minimizing the number of forward- and
back-substitutions was the prime objective for Geller

Table 2
CPU time required for each operation

Ž .Operation CPU time s
2 Ž0. Ž0.Ž .v T yH csy g
LU factorization 5.273
Substitutions 2.268

XŽ l . 2 Ž l . Ž l .Ž . Ž .g s v T yH c average 2.293
XŽ l .2 Ž0. Ž0.Ž .Ž .v T yH d crd m sy gl

aŽ .substitutions average 1.334
U bŽ . Ž .Eu rEm s y d crd m 0.02473i l i l

U2 Ž0. Ž0.Ž .v T yH z syy 13.18i i

substitutions
XŽ l .UŽ .Eu rEm sz g 0.4219i l i

average

a Forward substitution is performed only for elements corre-
sponding to depths shallower than the deepest laterally heteroge-

Ž .neous structure for the basis function l being considered , and
back-substitution is performed only to obtain the elements of
Ž .d crd m corresponding to the free surface.l

bAs only the elements of yU corresponding to the free surfacei

are non-zero, only a single scalar multiplication is required for the
toroidal problem.
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Ž .and Hara 1993 . However, the situation is different
for the case of a 1-D starting model, because the
CPU time required for the sparse multiplications is
no longer negligible compared to the CPU time
required for the forward- and back-substitutions.

We multiply the values in Table 2 by the opera-
tion counts to obtain estimates of the total CPU time

Ž .for an inversion Table 3 for a single frequency. The
data in Table 3 show that the alternative algorithm is
2.6 times more efficient than the 3-D algorithm for
this case. The alternative algorithm is advantageous
because it exploits the localization of the linear
spline trial functions. As the receivers are on the

Žk lm a .Ž .surface, C x s0 except for the node on ther

surface. Thus all of the elements of y are zeroi

except for those corresponding to the surface node.
Ž .In the multiplications in Eq. 6 , and the back-sub-

Ž .stitutions in Eq. 7 we thus have to evaluate the
product only for the surface node.

For the 3-D algorithm the heterogeneity is
Ž .parametrized so that x r is non-zero only in ak

Žrelatively limited depth range say, with a thickness
.of, 10% of the Earth’s radius . Thus only about 10%

of the elements of gXŽk l . will be non-zero. Even so,
the computational effort required to evaluate the dot

Ž p.U XŽk l . Ž .product z g last line of Table 3 is muchi

greater than the effort required to evaluate the dot
Ž p.U XŽk l . Žproduct y g last line for the alternative algo-i

.rithm in Table 3 , for which the only non-zero values
are at the Earth’s surface.

The most intensive part of the computations for
the alternative algorithm is the evaluation of gXŽk l . in

Ž .Eq. 8 , which is almost independent of the number
of vertical parameters. The second most intensive
part of the computation is the evaluation of d crd ml

Ž Ž ..at the surface node Eq. 7 . The CPU time for this
step is proportional to the number of parameters of
the vertical dependence. The CPU time shown in
Table 3 is for a boxcar parameterization of the
vertical dependence, and would be twice as large for
a linear spline parameterization and four times as
large for a cubic spline parameterization.

Finally, we consider the relation between the CPU
time required for the inversion and the number of

Ž .earthquakes and receivers. Geller and Hara 1993
showed that the CPU time for waveform inversion
w.r.t. a laterally heterogeneous initial model is pro-
portional to the summation of the number of earth-
quakes and receivers. But for a 1-D starting model
and the alternative algorithm, the dominant step in
the computation is different. The most computation-
ally intensive step in the inversion will be the evalua-

Table 3
Estimates of computational requirements for inversion
Alternative algorithm for 1-D starting model.

Operation count

Ž .Computation LU factorization Substitutions Multiplication Total CPU time s
2 Ž0. Ž0. Ž k . Žk .Ž .v T yH c syg 1 Ks30 0 73.3

XŽ k l . 2 Ž l . Ž l . Ž k .Ž .g s v T yH c 0 0 K=Ls14,400 33,000
XŽk l .2 Ž0. Ž0. Žk .Ž .Ž .v T yH d c rd m syg 0 K=Ls14,400 0 19,200l

UŽ k p. Ž p. Ž k .Ž . Ž .Eu rEm sy d c rd m 0 0 K=L=Ps288,000 7120i l i l

Total 59,400

3-D algorithm

Operation count

Ž .Computation LU factorization Substitutions Multiplication Total CPU time s
2 Ž0. Ž0. Ž k . Žk .Ž .v T yH c syg 1 Ks30 0 73.3

U2 Ž0. Ž0. Ž p. Ž p.Ž .v T yH z syy 0 Ps20 0 264i i
XŽ k l . 2 Ž l . Ž l . Ž k .Ž .g s v T yH c 0 0 K=Ls14,400 33,000

XŽ k l .UŽ k p. Ž p.Ž .Eu rEm sz g 0 0 K=L=Ps288,000 122,000i l i

Total 155,000 s
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XŽk l . Ž .tion of g in Eq. 8 . However, as this is also the
most intensive step in the computations of the Born
synthetics, the CPU time required for a waveform
inversion w.r.t. a spherically symmetric initial model
for one earthquake is of the order of the CPU time
required to compute first-order Born synthetics at all
stations for that earthquake. For the particular single

Ž .frequency for 0.0625 Hz considered in Section 4.4,
the estimated CPU times were 1920 and 1390 s,
respectively, for the inversion and the Born synthet-
ics. We have not yet made detailed estimates for the
computational requirements of the higher order Born
series.

5. Conclusions

We have developed theory, algorithms, and soft-
Žware for computing complete including both body

.and surface waves synthetic seismograms using
DSM modified operators for 3-D heterogeneous Earth
models. In this paper we used the Born approxima-

Žtion i.e., we treated the 3-D structure as a perturba-
.tion to a spherically symmetric model to reduce the

CPU time. The estimated CPU time in Section 4.4
shows that waveform inversion using this approxi-
mation is feasible. The CPU time will still be of this
general order if higher order terms of the Born series
are used.

Some previous studies used modal summation to
compute complete synthetic seismograms. However,
this approach is inefficient for body waveform com-

Žputations see the discussion by Cummins et al.,
.1997 . The DSM, which is a more efficient method

for computation of complete synthetic seismograms,
will make it possible to conduct iterative linearized
inversion of complete seismograms for 3-D Earth
structure.

To realize such inversion, computation of synthet-
ics which are more accurate than those obtained
using the 1-D Born approximation is essential. This
would require a few hundred or thousand times more
floating point operations than the computations in
this paper if a full LU decomposition were per-
formed. However, using higher order terms of the
Born series may allow the required number of float-
ing point operations to be greatly reduced. Wave-
form inversion will require a factor of a few tens or a

Žhundred times further operations due to the number
of earthquakes and the number of receivers; see

.Geller and Hara, 1993 . If the costrperformance
ration of supercomputers continues to increase at
current rates, this should be feasible within the next
10 years. We hope this paper will serve as a step
towards waveform inversion of complete seismo-
grams for 3-D Earth structure.
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