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Abstract

We conduct numerical experiments for several simple models to illustrate the advantages and disadvantages of various
schemes for computing synthetic seismograms in the time domain. We consider both schemes that use the pseudo-spectral

Ž . Ž .method PSM to compute spatial derivatives and schemes that use the finite difference method FDM to compute spatial
Ž .derivatives. We show that schemes satisfying the criterion for optimal accuracy of Geller and Takeuchi 1995 are

significantly more cost-effective than non-optimally accurate schemes of the same type. We then compare optimally accurate
PSM schemes to optimally accurate FDM schemes. For homogeneous or smoothly varying heterogeneous media, PSM
schemes require significantly fewer grid points per wavelength than FDM schemes, and are thus more cost-effective. In
contrast, we show that FDM schemes are more cost-effective for media with sharp boundaries or steep velocity gradients.
Thus FDM schemes appear preferable to PSM schemes for practical seismological applications. We analyze the solution
error of various schemes and show that widely cited Lax-Wendroff PSM or FDM schemes that are frequently referred to as
higher order schemes are in fact equivalent to second-order optimally accurate PSM or FDM schemes implemented as

Ž .two-step predictor-corrector schemes. The error of solutions obtained using such schemes is thus second-order, rather than
fourth-order. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Analyses of seismic data to determine earth struc-
ture and seismic source parameters require accurate
and efficient methods for computing synthetic seis-
mograms. Many methods are available for comput-
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ing synthetics, and users would like to know which
method is ‘‘best.’’ However, this question does not
have a single simple answer, because the accuracy
and efficiency of these methods depend both on the
nature of the problem and the computational equip-
ment being used. Nevertheless, the simple numerical
examples presented in this paper provide insights
into the comparative advantages and disadvantages
of various methods.

Only time-domain schemes are considered in this
paper. Generally speaking, time-domain methods are
preferable for problems requiring broad-band syn-
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thetics for a short time duration, whereas frequency-
domain methods are preferable for long time dura-
tions and relatively narrow bandwidths. However a
detailed comparison of time-domain and frequency-
domain methods is outside the scope of this paper.

Time domain schemes for computation of syn-
thetic seismograms discretize the spatial and tempo-
ral derivatives in the elastic equation of motion.
Several widely used schemes are based on the finite

Ž .difference method FDM . Other schemes use the
Ž .pseudospectral method PSM to compute spatial

Ž .derivatives e.g. Kosloff and Baysal, 1982 .
In most previous studies, the accuracy of nume-

rical schemes has been quantified by the phase ve-
Ž .locity or the group velocity error, which can be

derived only for a monochromatic plane wave propa-
Žgating in a homogeneous structure e.g. Fornberg,

.1987; Daudt et al., 1989 . On the basis of such
studies, PSM schemes have been concluded to be
superior to FDM schemes. However, by using the
error of the numerical solution rather than the phase
velocity error as the criterion for the accuracy of
numerical schemes, we can evaluate their relative
performance for general heterogeneous media, rather
than just for the homogeneous case.

Ž .Geller and Takeuchi 1995 , hereafter referred to
as GT95, derived a general theory for evaluating the
solution error of synthetic seismograms by using a
normal mode expansion, and used this result to
derive a general criterion for optimally accurate2

numerical operators. This criterion has been used to
derive optimally accurate operators in the frequency

Ždomain for laterally homogeneous Cummins et al.,
.1994; Takeuchi et al., 1996 and laterally heteroge-

Ž .neous Cummins et al., 1997 media in spherical
Ž .coordinates. Geller and Takeuchi 1998 , hereafter

referred to as GT98, used the above general criterion
to derive optimally accurate operators for a second-
order time-domain FDM scheme for 1-D problems.

Ž .Takeuchi and Geller 2000 , hereafter referred to as
TG00, extended these results to derive optimally
accurate second-order time-domain FDM operators
for 2-D and 3-D problems.

2 ‘‘Optimally accurate’’ denotes a scheme that achieves the
best possible performance for a given spatial and temporal grid-

Ž .ding and for a given type of scheme e.g. 2nd order FDM .

2. Theoretical Background

2.1. Criteria for optimally accurate operators

We briefly review and summarize key results of
GT95. They used a normal mode expansion to derive

Ž .a general result their eq. 2.20 for estimating the
relative error of synthetic seismograms in the fre-
quency domain:

2error v d T ydHm m m m
Relative errors f 2 2synthetic v yvm

2v ydH rd Tm m m m
s d T , 1Ž .m m 2 2v yvm

where v is the eigenfrequency of the mode closestm

to the frequency v, d T and dH are the matrixm m m m
Ž .elements in the normal mode basis for the error of

the numerical operators for the mass and stiffness
matrices respectively, and the modes are normalized
so that

u) Hexact u sv 2 u) T exact u sv 2 d . 2Ž .m n m m n m m n

ŽAs v approaches v v will never be equal tom

v if v is real and v includes an imaginary partm m
. Ž .due to anelastic attenuation. , the quotient in eq. 1

Žwill greatly increase i.e. the relative error of the
.synthetic seismograms will greatly worsen , unless

the following condition is approximately satisfied:

‘‘Generalized phase velocity error’’

s2v dv sv 2 d T ydH f0, 3Ž .m m m m m m m

where dv is the error in the eigenfrequencies thatm

would be obtained using the numerical operators.
Note that throughout this paper the equal sign im-
plies equality to the lowest relevant order, rather than
exact equality.

Ž .Eq. 3 is the general criterion of GT95 for opti-
Ž .mally accurate operators. If eq. 3 is satisfied, then,

Ž .from eq. 1 , the relative error of the synthetics is
given by

Relative errorf d T . 4Ž .m m

Although the above results are all given in the
frequency domain, they can readily be used to derive
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optimally accurate operators in the time domain
Ž .GT98, TG00 . Note that it is not necessary to know
the actual numerical values of the eigensolutions in

Ž .order to use eq. 1 to derive optimally accurate
ŽFDM operators for heterogeneous media see GT95,

.GT98 and TG00 for details . On the other hand, it is
necessary to know the eigensolutions to rigorously

Ž .evaluate eq. 4 for a heterogeneous medium. How-
ever, experience suggest that reasonable error esti-
mates for second order schemes can be obtained by

Ž .evaluating eq. 4 for a homogeneous medium whose
properties are the effective average of those of the
heterogeneous medium.

2.2. Characterizing the accuracy of numerical
schemes

The following two important implications of the
Ž .above results are discussed in detail by GT95. 1 It

is not the error of the respective numerical operators
that controls the error of the numerical solutions, but
rather only that component of the error that projects

Ž .onto the normal mode s near the frequency of inter-
est. This means that a large ‘‘point-source’’ error at
an internal or external boundary will not be a serious
problem, as it will contribute only marginally to any

Ž .one mode. 2 The important quantity governing
whether or not a given numerical scheme is opti-
mally accurate is not the errors of the mass and
stiffness matrices individually, but rather the differ-

Ž .ence of these quantities as given in eq. 3 . If the
Žgeneralized phase velocity error, v dv is zero tom m

.lowest order for all modes, then the numerical
scheme under consideration is optimally accurate.

Much confusion exists regarding the order of
accuracy of various numerical schemes. The quantity

Ž .defined in eq. 3 , v dv , is essentially a general-m m

ization of the error of the phase velocity to the case
of an arbitrarily heterogeneous medium. Suppose
v 2 d T and dH each contain terms proportionalm m m m m

to Dt 2 and Dx 2, where Dt and Dx are respectively
the temporal and spatial grid spacing. Optimal accu-
racy will be achieved when these terms are equal to

Ž 2 . Ž 2 .both O Dt and O Dx , so that the generalized
Ž .phase velocity error, v dv , as given by eq. 3m m

will be fourth-order, i.e. O Dt 4 , O Dx 4 , andŽ . Ž .
O Dx 2Dt 2 . However, even though the generalizedŽ .
phase velocity error of the optimally accurate scheme

is fourth-order, the error of the numerical solutions
for the optimally accurate scheme, as given by eq.
Ž . 2 24 , will still be O Dt and O Dx , i.e., second-Ž . Ž .
order, not fourth-order. For non-optimally accurate

Ž .schemes eq. 1 shows that the error of the numerical
Ž 2 . Ž 2 .solutions will also be O Dt and O Dx , but will

be multiplied by a dimensionless amplification factor
on the order of

2v ydH rd Tm m m m
. 5Ž .2 2v yvm

3. PSM-FDM operators for 1-D case

In this paper, for simplicity, we consider only the
1-D case but the general approach followed here can

Žalso be applied to the 2-D and 3-D cases see
.Appendix . The strong form of the elastic equation
Žof motion See Geller and Ohminato, 1994, for a

definitions of the strong and weak forms of the
.elastic equation of motion. for the 1-D case in the

time domain is as follows:

E 2 u x ,t E E u x ,tŽ . Ž .
r x y m x s f x ,t ,Ž . Ž . Ž .2 ž /E x E xE t

6Ž .

where r is the density, m is the rigidity, u is the
displacement, and f is the external body force.
Throughout this paper the elastic moduli are purely
real.

ŽThe following well known scheme e.g. Kosloff
.and Baysal, 1982 uses a second order FDM operator

for temporal differentiation, and a Fourier difference
Ž .pseudo-spectral operator for spatial differentiation.
ŽWe refer to this as the conventional PSM-FDM

.scheme.

Ž .7

where Dt is the temporal grid interval, and Dx is
the spatial grid interval. un is the displacement atj

time tsnDt and at spatial coordinate xs jDx, rj
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is the density at xs jDx, m is the rigidity atj

xs jDx, and is the Fourier difference operator:

Ž .8

where represents a discrete Fourier transform
operator for spatial differentiation, represents an
inverse discrete Fourier transform operator, and k is
the wavenumber. The Fourier and inverse Fourier
transform operators used in this paper are normalized
so that

Ž .9

3.1. Computation of deriÕatiÕes

ŽIt is well known e.g., Witte and Richards, 1990,
¨ .Fornberg, 1990, Ozdenvar and McMechan, 1996

that Fourier derivative operators achieve greater ac-
curacy by computing the spatial derivatives at x
s nq1r2 Dx rather than at xsnDx. This isŽ .
accomplished by using the discrete equivalent of the
shift theorem, i.e. multiplying in the wavenumber
domain by exp ikDxr2 , where k is the discreteŽ .

'wavenumber and is y1 , for the first spatial dif-
ferentiation, and shifting back by multiplying by
exp yikDxr2 in the wavenumber domain for theŽ .

Ž .second spatial differentiation. In other words, eq. 8
is replaced by

Ž .10

Ž .for the first of the differentiations in eq. 2 and by

Ž .11

for the second differentiation.
Our derivation of optimally accurate PSM-FDM

Ž .operators below is applicable to either of the above
Ž .definitions eq. 3 or eqs. 5 and 6 of the derivative

operators. We use the staggered derivatives in the
numerical examples.

3.2. ConÕentional and optimally accurate PSM-FDM
operators

We write the conventional PSM-FDM elastic
equation of motion in matrix form as follows:

A0 yK 0 u0 s f. 12Ž . Ž .
In this paper A0 and K 0 respectively denote the
conventional temporal and spatial derivative opera-

tors rather than the exact operators, and u0 denotes
the solution computed using the conventional opera-
tors rather than the exact solution. The conventional
operators are written as difference stencils as fol-
lows:

Ž .13

Ž .14

0 Ž .with the blank spaces in the stencil for K eq. 9
denoting zeros. This convention is followed through-

Ž .out this paper. Eq. 7 , the conventional PSM-FDM
scheme, is a system of simultaneous linear equations
in which the unknowns are the displacements at the
next time step. As each equation contains only a
single unknown, it is easy to solve explicitly for the
displacements at time tqDt.

The error of the conventional operators is com-
puted by a Taylor series expansion. Omitting details,
we obtain the following results:

Dt 2 E 4 u
0 0 0 exact 0dA u s A yA u sr 15Ž . Ž .412 E t

d K 0 u0 s K 0 yK exact u0 s0, 16Ž . Ž .
where Aexact and K exact are the exact temporal and

Ž .spatial operators. Eq. 15 gives the error due to the
Ž .FDM time differentiation, while eq. 16 shows that

the PSM spatial differentiation is essentially exact
Ž .neglecting the possibility of errors due to aliasing .
Combining these two results, we obtain the time-do-
main error of the conventional PSM-FDM operators:

Dt 2 E 4 u
0 0dA yd K usr . 17Ž . Ž .412 E t

To satisfy the criterion for optimally accurate opera-
Žtors see GT95 and GT98 for definitions and deriva-
. X Xtions , we must derive operators A and K which,
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Ž .rather than eq. 17 , instead have the following er-
rors:

Dt 2 E 4 u
X X0 exact 0dA u s A yA u srŽ . 412 E t

2 2Dt E E E u
X X0 exact 0d K u s K yK u s m .Ž . 2 ž /12 E x E xE t

18Ž .

Combining the above results, the time-domain error
of the optimally accurate scheme is

Time-domain errors
2 2 2Dt E E u E E u

X XdA yd K us r y mŽ . 2 2 ž /12 E x E xE t E t

Dt 2 E 4 u Dt 2 E 2 E
s r y4 212 12 E xE t E t

=
E u

m . 19Ž .ž /E x

Ž .The first line of eq. 19 shows that the desired time
domain error of the optimally accurate schemes is

Ž .given by derivatives of the left-hand side l.h.s. of
Ž .the equation of motion eq. 6 . The bracketed term in

Ž .the first line of eq. 19 will thus be zero when u x ,tŽ .
is a normal mode, since normal modes are solutions
of the homogeneous equation of motion. We con-
struct numerical operators that have the desired time-

Ž .domain error using the second line of eq. 19 .
Omitting the details of the derivation, the optimally
accurate operators that yield errors of the form of eq.
Ž .19 are as follows:

AX sA0 20Ž .

Ž .21

Ž .Eq. 20 shows that the temporal derivative opera-
Ž .tor is unchanged, while eq. 21 shows that the

spatial derivative operator is ‘‘blurred’’ into the tem-
poral domain. The extension of this result to the 2-D

Ž .and 3-D case is straightforward see Appendix .

3.3. Predictor-Corrector scheme

The optimally accurate operators given in eqs.
Ž . Ž .20 and 21 yield the following implicit scheme:

AX yK X us f. 22Ž . Ž .
To avoid the need to solve a system of linear equa-
tions at each time step, we use the same type of
predictor-corrector scheme as GT98. We rewrite eq.
Ž .22 as follows:

0 0 0A qdA y K qd K u qd u s f, 23Ž . Ž . Ž . Ž .
where we represent the optimally accurate operators
AX and K XXXXX as the sum of the conventional operator
and a correction term:

AX sA0 qdA 24Ž .
X 0K sK qd K,

where

Ž .25

and

dAs0. 26Ž .
Note that the corrector operators dA and d K are
distinct from the operator errors dAX and d K X that

Ž .are defined in eq. 18 .
The predictor-corrector scheme is implemented as

follows. First, the predictor term is computed using
Ž .the conventional operators by solving eq. 12 . The

corrector term is then computed using the first order
Born approximation:

A0 yK 0 d usy dAyd K u0 . 27Ž . Ž . Ž .
Ž .The solution of eq. 22 at time tqDt is the sum of

the predictor term and the corrector term:

usu0 Hdu. 28Ž .
Note that du t sdu tyDt s0, as u t andŽ . Ž . Ž .
u tyDt will already have been corrected by appli-Ž .

Ž .cations of eq. 28 at previous time steps. The com-
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Ž .putation specified in eq. 27 can therefore be simpli-
fied to

A0 d usd K u0 , 29Ž .
Ž .where the difference stencil for eq. 29 is

Ž .30

As noted above, du t sdu tyDt s0. The l.h.s.Ž . Ž .
Ž .of eq. 30 therefore becomes

rj
du tqDt . 31Ž . Ž .2Dt

Ž . Ž .The right-hand side r.h.s. of eq. 30 requires
Ž .Fourier FFT spatial difference operations at times

tqDt, t and tyDt. But the last two will already
have been computed at previous time steps, so if we
store these results temporarily, we only have to
compute the Fourier difference m u0 for timeŽ .j

tqDt. Thus, the above optimally accurate PSM-
FDM scheme requires twice as many Fourier differ-
entiations and about three times as many additions as
the conventional PSM-FDM scheme. We show be-
low that the gain in accuracy makes these additional
computations highly worthwhile.

3.4. Solution error

We derive the solution error of the conventional
Ž .eqs. 12–14 and the optimally accurate PSM-FDM

Ž .scheme eqs. 20–22 following GT98. To evaluate
the solution error, we define the frequency domain
operators corresponding to the conventional time-do-

Ž .main PSM-FDM operators eq. 12 :

B0 yL0 u0 s f, 32Ž . Ž .
where B0 and L0 are the frequency domain operators
which correspond to A0 and K 0 in the time domain.
In this paper the Fourier transform is defined as
follows:

`

u v s exp iv t u t dt . 33Ž . Ž . Ž . Ž .H
y`

Following GT95, the equation of motion in the
frequency domain can be written in the following
operator form:

v 2 T 0 yH0 usyf, 34Ž . Ž .

where T 0 and H0 are the mass and stiffness matri-
ces, which are related to B0 and L0 as follows:

v 2 T 0 syB0

35Ž .
0 0H syL .

We define the operator errors d B0, d L0, and d T 0,
d H0 as follows:

d B0 sB0 yBexact

0 0 exactd L sL yL 36Ž .
0 0 exactd T sT yT
0 0 exactd H sH yH .

Ž .From eq. 30 , the operator errors are related as
follows:

v 2d T 0 syd B0

37Ž .
0 0d H syd L .

Using the above relations, the basic error of the
conventional PSM-FDM operator is:

v 2d T 0 yd H0 us yd B0 qd L0 uŽ . Ž .

Dt 2
2 2sy v rv u. 38Ž .

12

The optimally accurate PSM-FDM operators are
Ž . X Xeqs. 20 and 21 A and K in the time domain, and
their Fourier transforms are BX and LX respectively.
To compute the relative solution error, we first de-
fine

v 2 T X syBX

39Ž .X XH syL .

The operator errors are then

d BX sBX yBexact

X X exactd L sL yL 40Ž .
X X exactd T sT yT
X X exactd H sH yH .
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When u is an eigenfunction and v is the correspond-
ing eigenfrequency, the basic error of the optimally

Ž .accurate PSM-FDM scheme eq. 22 is thus:

v 2d T X yd HX us yd BX qd LX uŽ . Ž .

Dt 2
2 2sy v rv u

12

Dt 2 E E u
2y v mž /12 E x E x

v 2Dt 2

w xsy EQM s0, 41Ž .
12

w xwhere EQM is the l.h.s. of the homogeneous equa-
tion of motion in the frequency domain:

E E u
2w xEQM srv uq m , 42Ž .ž /E x E x

w xso that EQM s0 when u is an eigenfunction and
Ž .v is the corresponding eigenfrequency. As eq. 41

shows that the above optimally accurate PSM-FDM
scheme satisfies the general criterion of GT95, the

Ž .relative solution error from eq. 4 of the optimally
accurate PSM-FDM scheme is

v 2 Dt 2
mX

d T s . 43Ž .m m 12

Thus, the relative solution error of the optimally
Ž 2 .accurate PSM-FDM scheme is still O Dt , even

Žthough the generalized phase velocity error see eq.
.3 is fourth-order. However, as we confirm by the

numerical tests in section 6, the amplitude of the
Ž 2 .O Dt error is much smaller for the optimally

accurate PSM-FDM scheme than for the conven-
tional PSM-FDM scheme.

3.5. Stability

The stability condition for the conventional 1-D
PSM-FDM schemes was analyzed by Kosloff and

Ž .Baysal 1982, p. 1412 . We follow their approach to
estimate the stability condition for the optimally
accurate PSM-FDM schemes. For a homogeneous

medium we substitute a harmonic solution, us
Žexp i kxyv t , into the conventional operator eq.Ž .

.12 to obtain Kosloff and Baysal’s stability condition
for the conventional operators:

2 Dx Dx
DtF f0.64 , 44Ž .

p b b

where

'bs mrr 45Ž .

is the wave velocity. The stability condition for the
Ž .optimally accurate scheme 22 in a homogeneous

medium is derived in the same way. Omitting de-
tails, we obtain:

'6 Dx Dx
DtF f0.78 . 46Ž .

p b b

Thus the stability condition for the optimally accu-
rate PSM-FDM schemes is slightly relaxed as com-
pared to that for the conventional PSM-FDM
schemes.

The stability condition for a heterogeneous
medium cannot be determined analytically, but could
be determined numerically on the basis of the maxi-
mum eigenvalue of the numerical operators. We
have not made such estimates for either the conven-
tional or optimally accurate PSM-FDM operators,
but GT98 and TG00 made such estimates for con-
ventional and optimally accurate time-domain FDM
operators. On the basis of their results, we conjecture

Ž . Ž .that eqs. 44 and 46 are approximately correct for
a heterogeneous medium if the maximum value of b

is used.

3.6. Numerical dispersion

In this section, we assume a homogeneous,
isotropic medium whose exact phase velocity b is

Ž .given by eq. 45 . We substitute a harmonic solution

numericalusexp ik xyb t . 47Ž .Ž .

Ž . Ž .into eqs. 12 and 22 . After straightforward compu-
tation, we obtain the numerical phase velocity b0
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and b
X for the conventional and optimally accurate

schemes respectively:
2 2 21 k b Dt

y1b s cos 1y0 kDt 2

1 32 4sb 1q kbDt q kbDt q ...Ž . Ž .
24 640

48Ž .
5

2 2 21y k b Dt1 12X y1b s cos 1kDt 2 2 21q k b Dt
12

1 4sb 1q kbDt q ... . 49Ž . Ž .
480

Ž . Ž .Eqs. 48 and 49 show that the numerical disper-
sion for the conventional PSM-FDM scheme is
Ž 2 .O Dt , while that for the optimally accurate PSM-

Ž 4.FDM scheme is O Dt . This is an expected result,
since the operators for the optimally accurate scheme

Ž .satisfy eq. 3 , which is in turn equivalent to mini-
mizing numerical dispersion to the lowest order.

4. Fourth order Runge-Kutta scheme

PSM spatial derivative operators are highly accu-
Ž .rate except for errors due to spatial aliasing , so

higher order time integration schemes are often used
to minimize the error due to temporal discretization.

Ž . ŽA fourth order Runge-Kutta RK4 scheme e.g.,
.Fornberg, 1996, pp. 197–200 is one possible higher

order time integration scheme that can be combined
with a PSM spatial scheme. We refer to this combi-
nation as a PSM-RK4 scheme. Other higher order

Žschemes have also been proposed e.g., Tal-Ezer et
.al., 1987 , but we do not consider them here.

In this section, we show that the conventional
Ž 4.PSM-RK4 scheme is optimally accurate to O Dt .

Ž .Following Fornberg 1996 , we begin by rewriting
Ž .the 1-D equation of motion eq. 6 as a system of

two coupled first order partial differential equations:
dv

XsDvq f , 50Ž .
dt

where v is the motion-stress vector:

u̇vs , 51Ž .ž /s

u is the first derivative of the displacement with˙
respect to time, D is the spatial derivative operator:

Ž .52

and f X is the body force vector:

f t rrŽ .Xf s . 53Ž .ž /0

Ž .The spatial derivatives on the r.h.s. of eq. 52 are
computed using the PSM, and the time integration on
the l.h.s. is computed using the following RK4
scheme:

Ž . X1 n ¶d sDt Dv qDt f tŽ .
1

XŽ .Ž2. n 1d sDt D v q d qDt f tqDtr2Ž .ž /2 •
1

XŽ .Ž3. n 2d sDt D v q d qDt f tqDtr2Ž .ž /2
X ßŽ .Ž4. n 3d sDt D v qd qDt f tqDtŽ . Ž .

54Ž .
1

Ž . Ž . Ž . Ž .nq1 n 1 2 3 4v sv q d q2d q2d qd , 55Ž .
6

where v n sv nDt . The various dŽ i. are intermedi-Ž .
Ž . Ž .ate solutions. Substituting eqs. 54 and 55 into eq.

Ž .50 , we obtain the following one-step explicit opera-
tor for the PSM-RK4 scheme:

v nq1 yv n Dt Dt 2
n 2 n 3 nsDv q D v q D v

Dt 2 6

Dt 3
4 n RKq D v q f , 56Ž .

24

where f RK is the fourth order body force term for
the RK4 scheme:

f X q4f Xqq f Xqq f X q2f Xq
RKf s qDtD

6 6

Dt 2 Dt 3
X X X2 q 3q D f q f q D f , 57Ž . Ž .

12 24

where

f Xqs f X tqDtr2Ž .
58Ž .X Xqqf s f tqDt .Ž .
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Ž . Ž . Ž .Substituting eqs. 51 and 52 into eq. 56 , we
Ž .obtain the explicit form of eq. 56 :

Ž .59

Ž .60

Ž . Ž .Transforming eqs. 59 and 60 into the frequency
domain and using a Taylor expansion, we obtain the
following:

Ž .61

Ž .62

Ž .where we used the equation of motion eq. 50 to
Ž Ž . Ž 2 .eliminate lower order terms O Dt , O Dt , and

Ž 3.. Ž . Ž .O Dt . Combining eqs. 61 and 62 to eliminate
the stress s , we obtain the numerical operators for
the RK4 scheme in the frequency domain:

v 2 TRK yHRK usyf 63Ž . Ž .
where TRK and HRK are the mass and stiffness
matrices for the PSM-RK4 scheme:

Dt 4
2 RK 2 6v T usrv uy v r u,

120
and

The operator errors of the PSM-RK4 scheme in the
frequency domain are:

d TRK sTRK yT exact

64Ž .
RK RK exactd H sH yH ,

where T exact and Hexact are the exact mass and
stiffness matrices. The basic error of the PSM-RK4
scheme for the m-th mode is thus

Ž .65

Thus the PSM-RK4 scheme satisfies GT95’s crite-
rion for optimally accurate numerical operators. The

Žsolution error in the frequency domain as defined by
.eq. 4 is

4 4v DtmRKd T s . 66Ž .m m 120

The phase velocity for the PSM-RK4 scheme is
obtained by substituting a harmonic solution into eq.
Ž .63 . Omitting details, we obtain:

b RK4 sb 1qO Dt 6 . 67Ž . Ž .Ž .
The stability condition of the above PSM-RK4

Žscheme has been analyzed in many works e.g.,
.Fornberg, 1996, p. 199 . Omitting details, for a

homogeneous and unbounded medium, the stability
condition is the same as that for optimally accurate

Ž .PSM-FDM operators eq. 46 . We have confirmed
this result by numerical tests.

5. Lax-Wendroff correction scheme

Ž . ŽLax-Wendroff LW correction schemes Lax and
.Wendroff, 1964 for the elastic and acoustic cases

Žhave been presented by many authors e.g. Dablain,
1986; Kneib and Kerner, 1993; Robertsson et al.
1994; Igel et al., 1995; Blanch and Robertsson,

.1997 . The basic concept of Lax-Wendroff correc-
tion is to use the equation of motion to replace
temporal derivatives by spatial derivatives. For ex-
ample, for the 1-D case, the LW correction is based
on the following substitution:

E 2 1 E E
§ m . 68Ž .2 r E x E xE t
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Ž .If the operand of the operators in eq. 68 is an
eigenmode of the homogeneous equation of motion,

Ž .the left arrow in eq. 69 can be replaced by an equal
sign, but generally the above substitution is not
valid. However, we show below that the LW correc-
tion schemes, although apparently different in form,
are essentially equivalent to the optimally accurate
predictor-corrector schemes derived by GT98, TG00,
and in this paper, and thus can be rigorously justi-
fied.

LW correction schemes are often described as a
Ž Ž 4.method for achieving higher order e.g. O Dt rather

Ž 2 ..than O Dt temporal accuracy, but we show below
that this is not the case. Although LW correction
schemes significantly reduce the amplitude of the
error of the numerical solutions, they do not change
the order of accuracy of the solutions, which is still
Ž 2 .O Dt .

5.1. Lax-Wendroff correction scheme for PSM-FDM

Ž .The LW scheme uses eq. 68 to correct the
Ž 2 .O Dt temporal operator error of the conventional

Ž .PSM-FDM scheme see eq. 15 by spatial deriva-
tives, using the following substitution:

Dt 2 E 4 u Dt 2 1 E E 1 E E
r §r m m u ,4 ž / ž /12 12 r E x E x r E x E xE t

69Ž .

thereby obtaining the following spatial correction
operator:

Ž .70

Using the above correction operator, the PSM-FDM-
LW scheme is written as:

A0 us K 0 qd K LW uq fŽ .
sK LW uq f, 71Ž .

where

K LW sK 0 qd K LW . 72Ž .

In order to estimate the solution error of the
PSM-FDM-LW scheme, we define the PSM-FDM-
LW operators in the frequency domain, B0 and LLW .
The operator errors, d B0 and d LLW, are

rv 4Dt 2
0d B s 73Ž .

12

rDt 2 1 E E 1 E E
LWd L s m m u. 74Ž .ž / ž /12 r E x E x r E x E x

When u is an eigenmode and the frequency v is
equal to the corresponding eigenfrequency, the basic
error is as follows:

w x 0 LWBasic error s d B yd L uŽ .
rDt 2 E E 1

2 w xs v y m EQMž /12 E x E x r

s0, 75Ž .
w xwhere EQM is the l.h.s. of the homogeneous equa-

tion of motion in the frequency domain as given by
Ž .eq. 42 . Because the PSM-FDM-LW scheme is thus

an optimally accurate scheme, we can evaluate the
Ž . Ž .solution error based on eqs. 37 and 73 :

w xSolution error of PSM-FDM-LW scheme

v 2 Dt 2
m

s d T s . 76Ž .m m 12

Thus the solution error of the PSM-FDM-LW scheme
Ž 2 . Ž 4. Ž .is O Dt , rather than O Dt . Note that eq. 43 ,

which gives the solution error for the optimally
Ž .accurate PSM-FDM scheme, is equal to eq. 76 . We

show below that this is because the optimally accu-
rate predictor-corrector PSM-FDM scheme is essen-
tially equivalent to the PSM-FDM-LW scheme.

The numerical dispersion of the phase velocity for
the PSM-FDM-LW scheme for homogeneous media
is obtained by substituting a harmonic solution into

Ž .eq. 71 . Omitting details, we obtain the numerical
phase velocity:

1 4LW 4b sb 1y k bDt . 77Ž . Ž .
720

Note that the order of accuracy is the same as for the
Ž .optimally accurate PSM-FDM scheme see eq. 49 ,
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Ž 4.although the coefficient of the O Dt term is differ-
ent.

5.2. EquiÕalence of PSM-FDM-LW and optimally
accurate PSM-FDM schemes

ŽThe optimally accurate PSM-FDM scheme eq.
. Ž .22 is a two-step predictor-corrector procedure.

However these two steps can be combined, by re-
placing u0 tqDt in the corrector step by its ex-Ž .
plicit value, from the predictor step, to obtain an
explicit one-step formulation. The equation that

Ž .yields the predictor term eq. 12 may be written as
follows:

Ž .78
Ž .The corrector term eq. 30 may be written as

follows:

Ž .79

Ž .where we used eq. 78 in going from the first line of
Ž .eq. 79 to the second.

The corrector term for the optimally accurate
Ž . ŽPSM-FDM scheme eq. 79 is thus exactly equal to

. Ž .the lowest order to the LW correction term eq. 70
if f n s0, but will be slightly different due to the

Žspatial derivative of the external body force term the
. nlast term in eq. 79 if f /0. The optimally accurate

PSM-FDM scheme implemented as a predictor-cor-
rector scheme is thus equivalent to the PSM-FDM-
LW scheme except for the slight error in the external
body force term used by the latter. The difference of

Ž 2 .the body force term is O Dt , so it can be shown
that this term does not significantly degrade the

Ž . Žaccuracy of the solution obtained eq. 71 . For a
more detailed discussion of the treatment of the force

.term see section 5 of TG00 . Note that the computa-
Žtional costs of both the PSM-FDM-LW scheme eq.

.71 and the predictor-corrector implementation of the
Ž .optimally accurate PSM-FDM scheme eqs. 12–28

are essentially the same, because the LW correction
Ž .term eq. 70 and the corrector step of the optimally

Ž .accurate PSM-FDM scheme eq. 30 both require
two additional Fourier differentiations at each time
step.

Ž .As shown by eq. 77 , the error of the phase
Ž 4.velocity is O Dt for the homogeneous case. How-

Ž .ever, as shown by eq. 76 , the relative error of the
Ž 2 .solution for the PSM-FDM-LW scheme is O Dt ,

and is equal to that of the optimally accurate PSM-
Ž .FDM scheme given by, eq. 43 . Thus both the

PSM-FDM-LW scheme and the optimally accurate
PSM-FDM scheme, which, as shown above, are
essentially equivalent, should be classified as opti-
mally accurate second order schemes rather than as
‘‘fourth-order’’ schemes.

5.3. Lax-Wendroff correction scheme for FDM
schemes

So-called spatially fourth order and temporally
Ž Ž ..second order O 4,2 FDM schemes are widely used

Že.g. Kelly et al., 1976; Frankel and Clayton, 1986;
.Levander, 1988 . Implementations which combine an

Ž .LW correction scheme with a conventional O 4,2
ŽFDM scheme Dablain, 1986; Blanch and Roberts-

.son, 1997 are hereafter referred to as FDM-LW
Ž .schemes. Such schemes are often called O 4,4

schemes, meaning that fourth-order accuracy in both
space and time is implied. We show in section 5.4
that the FDM-LW scheme is actually equivalent to

Ž .an optimally accurate O 2,2 FDM scheme imple-
Ž .mented as a two-step predictor-corrector scheme,

Ž .and that the solution error of the so-called O 4,4
schemes is actually second order in both space and
time. In this and the next sections, we consider only
a one-dimensional homogeneous medium, but these

Žresults are applicable to general cases see GT98 and
.TG00 .

Ž .The conventional so-called O 4,2 scheme for a
one-dimensional homogeneous medium is written in
the following operator form:

A0 yK F u0 s f, 80Ž . Ž .
0 Ž .where the difference stencils are A eq. 13 and
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Ž .81

The Lax-Wendroff correction scheme uses a spa-
tial difference operator which is defined as follows:

K LW4 sK F qd KC , 82Ž .
where d KC is the LW correction operator that

Ž .modifies the operator error of eq. 15 :

Dt 2 E 4 u Dt 2 m2 E 4 u
r § , 83Ž .4 412 12 rE t E x

and

Ž .84

where is the Courant number,

Ž .85

Ž . Ž .Substituting eq. 84 into eq. 82 , we obtain

Ž .86

Using the above operators, the FDM-LW scheme can
be written in operator form as follows:

A0 usK LW4 uq f

sK Fuqd KC uq f. 87Ž .
Omitting details, we compute the numerical dis-

persion of the phase velocity by substituting a har-

monic solution into the above FDM-LW scheme:

1 4FDM - LW 4b sb 1y k 4 DxŽ .Ž
720

2 2 4y5 Dx bDt q bDt . 88Ž . Ž . Ž . Ž ..
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Although the above phase velocity error is fourth-
order, we show below that the solution error for this

Ž .scheme is optimally accurate second-order.

( )5.4. EquiÕalence of optimally accurate O 2,2 FDM
scheme and FDM-LW scheme

Ž .GT98 derived an optimally accurate O 2,2 FDM
Ž .operator as a two-step predictor-corrector scheme.

Ž .In this section, we derive the explicit one-step form
of this scheme for a homogeneous medium, and
show that it is essentially equal to the above LW
scheme.

Ž .The conventional O 2,2 FDM operator is written
as follows:

A0 yK 0 u0 s f, 89Ž . Ž .
where

Ž .90

and

Ž .91

Ž .The optimally accurate O 2,2 FDM operator de-
rived by GT98 is as follows:

AX yK X us f, 92Ž . Ž .
where

AX sA0 qdA

K X sK 0 qd K 93Ž .
and

Ž .94

Ž .95

The operator errors in the frequency domain, d BX

and d LX, are:

v 4Dt 2 Dx 2 E 2 u
X 2d B usr uqrv 96Ž .212 12 E x

Dt 2 E 2 u Dx 2 E 4 u
X 2d L usmv qm . 97Ž .2 412 12E x E x

When u is an eigenfunction and v is the correspond-
ing eigenfrequency, the basic error is given by

Dt 2
X X 2w xd B yd L us v EQMŽ .

12

Dx 2 E 2

w xy EQM212 E x

s0. 98Ž .
Ž .By analogy to eq. 35 , the matrix elements for the

operator error are given by

v 2 Dt 2 k 2 Dx 2
m mX

d T sy ym m 12 12
99Ž .

2 2 2 2Dt k v Dxm mX 4dH syv y ,m m m 12 12

where for a homogeneous medium, the wavenumber
of the m-th mode, k , is given bym

k sv rb , 100Ž .m m

Ž . Ž .where b is given by eq. 45 . From eqs. 4 and
Ž .99 , the relative solution error of the above opti-

Ž 2 2 .mally accurate FDM scheme is O Dx , Dt .
GT98 implemented the above optimally accurate
Ž .O 2,2 scheme using a two-step predictor-corrector

scheme. The explicit form of the predictor step is
Ž .see also appendix of GT98 :

Dt 2 Dt 2
nnq1 n ny1 0 nu y2u qu s K u q f .Ž . jj j j j

r r

101Ž .
The corrector term is obtained by solving:

A0 yK 0 d uy dAyd K u0 . 102Ž . Ž . Ž .
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We write the temporal correction term dAu0 in
explicit form:

rn0 nq1 n ny1dA u s u y2u quŽ . Ž .j jq1212 Dt

2 r
nq1 n ny1y u y2u quŽ . j212 Dt

r
nq1 n ny1q u y2u quŽ . jy1212 Dt

1 2n n0 0s K uq f y K uq fŽ . Ž .jq1 j
12 12

1 n0q K uq fŽ . jy1
12

1 2n n0 0s K u y K uŽ . Ž .jq1 j
12 12

1 1 Dx 2
n n0 0q K u q K fŽ . Ž .jy1 j

12 12 m

Dx 2
n nE 0s dA u q K f , 103Ž . Ž . Ž .j j

12m

dAE is the explicit one-step form of dA:

Ž .104

Omitting details, the explicit form of d Ku0 is derived in the same way:

Dt 2
n n n0 0 E 0 0d K u s d K u q K f ,Ž . Ž . Ž .j j j

12 r

where

Ž .105

Finally, the explicit one-step form of the predic-
tor-corrector scheme is written as follows:

A0 us K 0 ydAE uqdK E uq f XŽ .

sK Fuqd K Euq f X , 106Ž .

where K F is the fourth order accurate spatial differ-
ence operator:

K F sK 0 ydAE , 107Ž .
F 0 E Ž . Ž .K , K , and dA are given by eqs. 81 , 90 , and
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Ž . X105 respectedly, and f is the modified external
force term:

Dx 2 Dt 2
X 0 0f s fy K fq K f. 108Ž .

12m 12 r

E Ž .The correction operator d K in eq. 104 is equal to
C Ž .the LW correction term d K eq. 87 . Thus eq.

Ž . Ž .106 is equal to the above so-called O 4,4 LW
Ž .scheme eq. 87 , except for the slightly different

Ž .external body force term in eq. 108 . The slight
Ž 2 2 .difference of the force term is O Dx ,Dt , so this

correction does not degrade the order of the solution
error. The relative solution error of both the FDM-

Ž .LW scheme and the optimally accurate O 2,2 FDM
scheme, which are basically equal, is therefore
Ž 2 2 . Ž .O Dx ,Dt see eq. 99 .

5.5. PerspectiÕe on LW operators

For the homogeneous case, the equivalence of the
Ž .FDM-LW scheme and the optimally accurate O 2,2

ŽFDM scheme implemented as a predictor-corrector
.scheme was proved by transforming the latter to a

one-step explicit scheme. The equivalence between
Ž . Žvarious one-step LW schemes and two-step pre-

.dictor-corrector schemes is shown in Table 1
Ž .The two-step predictor-corrector algorithms

seem to be somewhat preferable to one-step algo-
Ž .rithms for the following reasons: 1 the localization

Žof the stencils compare eq. 18 of GT98 to eqs. 81
. Ž .and 84, above , 2 the greater ease of programming

Ž .for the heterogeneous 2-D and 3-D cases see TG00 ,
Ž .and 3 the greater ease of deriving the operators for

boundary elements or heterogeneous media. The first
point is especially important for massive parallel
computing. As for the second point, the derivation of
LW schemes for the heterogeneous 2-D or 3-D cases
seems unnecessarily complex as compared to the

Žpredictor-corrector schemes compare Sei and Symes,
.1995, to GT98 or TG00 .

6. Numerical Examples

In this section we present simple one-dimensional
numerical examples to compare the effectiveness of

Ž .three numerical schemes: 1 optimally accurate
Ž .PSM-FDM, 2 optimally accurate second order FDM

Žin space and time hereafter referred to as FDM-
. Ž .FDM , and 3 a fourth-order optimally accurate

PSM-RK4 scheme. The first and third of these
schemes were presented above in sections 3 and 4
respectively, and the second scheme was presented
by GT98 and is also summarized above in section
5.4. As shown above in section 5, the first and

Žsecond schemes, which are two-step predictor-cor-
.rector schemes, are basically equivalent to the corre-

Ž .sponding one-step Lax-Wendroff schemes.

Table 1
Ž .A comparison of the two-step predictor-corrector scheme optimally accurate schmes and the equivalent one-step Lax-Wendroff schemes

Equivalence of schemes

Ž .Two-step predictor-corrector scheme One step explicit scheme LW

Ž .PSM-FDM Ø Section 2 of this paper Ø Kneib and Kerner 1993
optimally accurate PSM-FDM

Ž .Ø Dablain 1986
2-D ‘‘Block’’ heterogeneous case

Ž .Ø GT98 Ø Sei and Symes 1995
pure FDM 1-D heterogeneous case 2-D heterogeneous acoustic case

Ž .Ø TG00 Ø Igel et al. 1995
2-D and 3-D heterogeneous case General anisotropic case

Ž .Ø Blanch and Robertsson 1997
1-D homogeneous visco-elastic case
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ŽSeveral studies e.g., Kosloff et al., 1984, Cerjan
et al., 1985, Kosloff and Kosloff, 1986, Furumura

.and Takenaka, 1995, Wu and Lees, 1997 have
addressed the question of how to include boundary
conditions such as a free surface or an absorbing
boundary layer in PSM schemes, but we use only
periodic boundary conditions in the calculations pre-
sented here.

6.1. RelatiÕe solution error in time domain

GT95 obtained a formula for the relative error of
solutions obtained using optimally accurate numeri-

Žcal operators in the frequency domain see eq. 4
.above, and eq. 2.20 of GT95 . For the optimally

accurate PSM-FDM operators, the relative error in
Ž .the frequency domain is given by eq. 43 . In the

time domain, the net solution error is proportional to
Dt 2, where the proportionality constant K represents
the weighted contribution of the various frequencies
that are summed to obtain the solution:

22K bDtŽ .
Relative errorf 109Ž .

12

Žwhere we assume a homogeneous medium bs
.const. . K is determined by the frequency depen-

dence of the problem, i.e. by the frequency content
Ž .of the source. Assuming K in eq. 109 is a weighted

contribution of the various frequencies, we can apply
Ž .eq. 109 to the heterogeneous problem if viewed as

an approximation that does not include errors due to
aliasing.

If only the discretization error due to the FDM
temporal differentiation were considered, it might
appear that the error of the solutions obtained using
the optimally accurate PSM-FDM scheme could be
reduced to any arbitrary small level by using a
sufficiently smaller time step. However the numeri-
cal examples presented below show that this is not
the case, as there are other errors that must also be
considered, in particular the aliasing of the PSM
spatial derivatives due to velocity structures that

Žinclude a sharp discontinuity or a steep velocity
.gradient . As shown below, when the structure model

has sharp discontinuities, the solution error for the
PSM schemes is dominated by errors due to aliasing.

The solution error of an optimally accurate sec-
Ž .ond-order in both space and time FDM scheme

Ž .GT98 is:

v 2 Dt 2 qk 2 Dx 2
m m

d T s , 110Ž .m m 12

in the frequency domain and

22 2K Dx q bDtŽ .Ž .
Relative errorf 111Ž .

12

Ž .in the time domain. By comparing eqs. 109 and
Ž .111 , we see that the major difference between the
optimally accurate PSM-FDM scheme and the opti-

Ž . Ž .Fig. 1. Density and velocity structures for 1-D numerical computation test. a homogeneous model, b smoothly varying heterogeneous
Ž . Ž .'model bs 0.6q0.4cos 2p xr6.4 , and c discontinuous two-layered model. Density structures are constant for all models. AllŽ .

models are periodic in space, i.e., have periodic boundary conditions.
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mally accurate FDM-FDM scheme is that the solu-
tion error of the latter depends on both the spatial
and temporal grid spacing, while the solution error of
the former depends only on the time step.

6.2. Performance comparison of conÕentional and
optimally accurate PSM-FDM schemes

In this section, we compare the performance of
the optimally accurate PSM-FDM scheme to the
conventional PSM-FDM scheme. We consider three
1-D problems: the homogeneous structure shown in
Fig. 1a, the smoothly varying heterogeneous struc-
ture shown in Fig. 1b, and the heterogeneous struc-
ture with sharp discontinuities shown in Fig. 1c. The
length of the computational domain is 6.4 km, and
the structure and wavefield repeat periodically. The
source is a single force with a Ricker wavelet time-
dependence whose central frequency is 0.6 s. The
source is at xs3.2 km and the receiver is at xs
4.0 km. We calculate waveforms with a duration of
11.2 s, which is roughly the time required for a wave
to travel about two laps in the computational domain.
The discontinuities for the structure shown in Fig. 1c
are located exactly at a grid point.

Fig. 2 shows the relation between the time step
and the PSM-FDM solution error for the case of
Ns512 spatial grid intervals. The horizontal axis is

the timestep Dt normalized by the FDM Courant
limit:

Dx
Dt s , 112Ž .Courant

bmax

where b is the maximum velocity in the medium.max

The relative solution error is defined as

w xrelative solution error %

2uyu dtŽ .H exact

s =100. 113Ž .
2) u dtH exact

Ž .For the homogeneous case Fig. 1a and the discon-
Ž .tinuous two-layered case Fig. 1c , u is the ana-exact

lytical solution for a point source, while for the
Ž .smoothly heterogeneous case Fig. 1b , u is theexact

Ž .numerical solution for a fine grid Ns8192 .
Ž .For the homogeneous case Fig. 2a , the errors

decrease as we take smaller time steps. As theoreti-
cally expected, the solution error is proportional to
Dt 2 for the PSM-FDM schemes. When the time step
is very small and the optimally accurate PSM-FDM
scheme is used, the solution error is saturated be-
cause of the aliasing due to the point source term.

Ž . ŽFig. 2. Time domain relative error of waveforms computed by the conventional squares with chained line and optimally accurate gray
.triangles with solid line PSM-FDM operators with Ns512 spatial grid points. Time step is normalized by the Courant stability limit of a

Ž . Ž . Ž .pure FDM scheme. a , b and c correspond to the structures shown in Fig. 1a, 1b, and 1c respectively. The solid and dotted lines are
plotted by empirical curve fitting.
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Except for this saturation, the solution error of the
synthetics computed by the optimally accurate PSM-
FDM operators is about 35 times less than that for
the synthetics computed by the conventional PSM-
FDM operators for the same spatial and temporal
grid, while the CPU time is about only twice that of

Ž .the conventional operators see section 3.3 . The
saturation due to the point source term is not impor-
tant for the conventional PSM-FDM scheme, but for
highly accurate PSM-FDM schemes such as opti-
mally accurate PSM-FDM or PSM-RK4 schemes,
this saturation becomes important. For the smoothly

Ž .varying heterogeneous case Fig. 2b , the error de-
creases as smaller time steps are used, as for the
homogeneous case, and the solution error of the
optimally accurate operators is smaller than that of
the conventional operators.

In contrast, the saturation of the solution error is
pronounced for the structure which has a sharp dis-

Ž .continuity Fig. 2c . This saturation is not due to the
point source term but rather to the inability of Fourier
Ž .FFT differentiation to accurately account for the
effect of the sharp discontinuities in the structure.

Ž .The Fourier FFT derivative operators have large
errors due to aliasing, even though the discontinuity
is located precisely at a grid point. For the optimally
accurate PSM-FDM computation, the error remains
essentially unchanged as the time step is decreased

Ž .from its stability limit 0.78 Dt , while for theCourant

conventional scheme saturation occurs when the time
step is smaller than about 0.1Dt . Thus theCourant

optimally accurate PSM-FDM scheme achieves the
same accuracy as the conventional PSM-FDM
scheme with about eight times as large a time step.
This means that the optimally accurate scheme is
about four times more cost-effective than the con-
ventional schemes, after taking into account the addi-
tional computations.

6.3. Comparison of time-domain schemes

The error of PSM-FDM schemes can be reduced
by either using a finer mesh or using a smaller time
step, but both will increase the CPU time. We inves-
tigate their relative cost-effectiveness in improving
the accuracy of the numerical solution, and show
below that the answer depends on the nature of the
velocity model.

The relation between the CPU time and the rela-
tive solution error in the time domain of the opti-
mally accurate PSM-FDM scheme is shown in Fig. 3
for the three velocity structures in Fig. 1. The error
due to the point source is ignored for the PSM-based
schemes. Fig. 3a shows that the efficiency of the
PSM-FDM for the homogeneous case can best be
improved by decreasing the time step without using

Fig. 3. The CPU time versus time domain relative error of the optimally accurate PSM-FDM scheme for the structures in Fig. 1. The
different symbols represent different spatial gridding. For each given type of symbol, the time step Dt decreases from the left to the right.
The dotted lines show the most cost-effective choice for each scheme.
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Ž .Fig. 4. The CPU time versus time domain relative error for the PSM-RK4 scheme same format as Fig. 3 .

a finer mesh. Thus the most cost-effective strategy
for the PSM-FDM scheme for the homogeneous case
is to decrease the time step, while using the coarsest

Žpossible spatial grid at least two grid points per
.wavelength .

Ž .For the smoothly heterogeneous case Fig. 3b ,
the pattern is generally the same as for the homoge-
neous case. Note, however, that the coarsest grid
Ž .Ns128 is insufficient, as shown by the fact that
the error saturates as Dt decreases. In contrast, for

Žthe structure which has sharp discontinuities Fig.

.3c , the solution error saturates for all values of N.
This is because the solution error for a structure
which has a sharp discontinuity is dominated by
aliasing error due to the sharp discontinuity. The
only way to improve the accuracy for this case is to
use a smaller spatial grid, since, as shown in Fig. 3c,
there is no appreciable advantage to decreasing the
time step.

The relation of the CPU time and relative solution
Ž .error of the PSM-RK4 scheme Fig. 4 is similar to

that of the optimally accurate PSM-FDM scheme,

Ž . Ž .Fig. 5. The CPU time versus time domain relative error for the optimally accurate O 2,2 FDM scheme same format as Fig. 3 .
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Fig. 6. The CPU time versus time domain relative error for three different structures. The results for the optimally accurate PSM-FDM
Ž . Ž . Ž . Ž .scheme thick dotted line , PSM-RK4 thin dotted line and optimally accurate O 2,2 FDM thick solid line are plotted. Only the most

cost-effective choice for each scheme and grid spacing is plotted.

but the error of the PSM-RK4 scheme is proportional
4 Ž .to Dt for the homogeneous Fig. 4a and smoothly

Ž .heterogeneous media Fig. 4b . For the structure
Ž .which has sharp discontinuities Fig. 4c , as was also

the case for the optimally accurate PSM-FDM
schemes, the error is determined mainly by the spa-
tial grid interval.

The relative solution error of the optimally accu-
Ž . Ž .rate O 2,2 FDM scheme Figs. 5a–c depends on

both the temporal and spatial gridding. For all cases,
Ž 2 .the solution error is dominated by the O Dx error.

ŽThe slopes of the lines in the three figures Figs.
.5a–c are all equal to y1. This is because for a time

step near the Courant limit, both the relative solution
error and the CPU time for a 1-D calculation are
proportional to N 2. Note that the slopes would be
respectively 2r3 and 2r4 for 2-D and 3-D calcula-
tions, as the CPU times would be proportional to N 3

and N 4 respectively.
The best results for the PSM-FDM, the PSM-RK4,

Ž . Ž .and O 2,2 FDM schemes are shown in Fig. 6 for a
Ž .the homogeneous case, b the smoothly heteroge-

Ž .neous case and c the discontinuous case. For the
homogeneous and the smoothly heterogeneous cases,
the most cost-effective scheme is the PSM-RK4
scheme, whose relative error is roughly proportional
to the fourth power of the CPU time.

For the structure which has sharp discontinuities,
the most cost-effective of the three schemes is the

Ž .optimally accurate O 2,2 FDM scheme. The reason
is that the relative error of PSM-based schemes for

Ž .this case is of the same order as that of an O 2,2
FDM scheme with the same grid spacing, despite the
smaller computational requirements per grid point of

Ž .the FDM scheme. Thus the O 2,2 FDM scheme is
the most cost-effective scheme for the discontinuous
case. We did not compare the PSM-RK4 scheme to
other higher order time-integration scheme such as

Ž . Ž .that of Tal-Ezer et al. 1987 or Igel et al. 1995 .
However the performance of all such higher-order
schemes for media with sharp discontinuities is lim-
ited by the aliasing of the spatial PSM scheme, rather
than by the error of the time-integration scheme.

7. Discussion

PSM schemes have sometimes been characterized
as superior to FDM schemes from the standpoint of
both memory and CPU time. However, the results
presented in this paper show that the choice of
method depends heavily on the nature of the prob-
lem. As the Earth has sharp discontinuities at the free
surface and at internal discontinuities, and also has
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Ž .sharp velocity gradients, optimally accurate O 2,2
FDM schemes are likely to be more cost-effective
schemes for most practical applications. The difficul-
ties of handling non-periodic boundary conditions,
and the non-locality of memory access of the FFT,
which seem to make PSM schemes difficult to im-

Žplement on massively parallel computers Furumura
.et al., 1998 compared with FDM schemes, are

further arguments against the use of PSM-based
methods in practical applications.

7.1. Relation between grid spacing and accuracy

ŽIt is apparently widely believed e.g. Fornberg,
.1996 that only two grid points per wavelength are

sufficient for PSM-based schemes to achieve suffi-
cient accuracy, but as shown by the above examples,
this is not true for structures that have sharp disconti-
nuities. On the other hand, to determine the number
of grid points per wavelength required for an opti-

Ž .mally accurate second order in space and time
FDM scheme to achieve some given desired accu-

Ž .racy, we can use eq. 6.2 in GT95. Note that the
criterion for accuracy is the relative error of the
numerical solution, rather than the numerical disper-
sion of the phase velocity.

For a monochromatic wave and a 1-D homoge-
neous medium, the relative error is given by eq.
Ž .111 .

Ž .114

Ž .where ls2prk , and the Courant limit s1 isx

used. The grid spacing required to produce some
given desired relative error is therefore:

6.6
grid pointsrwavelengthf . 115Ž .(

relative error

Thus to achieve a relative error of 0.01s1% using
Ž .optimally accurate O 2,2 time domain FDM opera-

tors for a 1-D problem, we require about 25 grid
pointsrwavelength. If a coarser grid, say 8 points

per wavelength, is used, a solution error of about
10% would be obtained. For a general heterogeneous
medium, the relative error cannot be rigorously esti-
mated. However we can use the above result as a
rough estimate.

Previous workers appear not to have sufficiently
considered the question of what level of relative
error of the numerical solution was acceptable in

Ž .various applications e.g. waveform inversion , as
they have used the error of the phase velocity as the
criterion for accuracy. This appears to have led to
overly optimistic expectations that relatively coarse
grids would yield acceptable results for practical
applications. We suggest that users of numerical
modeling codes should carefully consider this ques-
tion when choosing their grid spacing.
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Appendix A. Optimally accurate PSM-FDM
schemes for 2-D and 3-D case

The conventional PSM-FDM operator for the
equation of motion is

Ž .A1

where is the Fourier differentiation operator with
respect to the i-th spatial component, u is i-thi

component of displacement rather than eigenmode,
C is the elastic modulus, and summation overi jk l

repeated indices is implied.
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Neglecting the numerical error due to aliasing of
the Fourier difference operator , the optimally
accurate operator for this case is the following:

Ž .A2

The stability condition for the 2-D and 3-D case is
Žderived in the same way as for the 1-D case Kosloff

and Baysal, 1982, Kosloff et al., 1984, Witte and
.Richards, 1990 . The stability condition cannot be

derived analytically for the general heterogeneous
case, but can be derived for the homogeneous case
with periodic boundary condition. Omitting details
and assuming DxsD ysDz, the stability condi-
tions of the conventional PSM-FDM operators for
the 2-D and 3-D case are

'2 Dx Dx
DtF f0.45 , A3Ž .

p V Vmax max

and

2 Dx Dx
DtF f0.36 A4Ž .' V V3 p max max

respectively, where V is the maximum velocity ofmax

the system. For the SH-problem, V sV , and formax s

P-SV problem, V sV . The stability conditions ofmax p

the optimally accurate PSM-FDM operators for 2-D
and 3-D case are

'3 Dx Dx
DtF f0.55 , A5Ž .

p V Vmax max

and

'2 Dx Dx
DtF f0.45 . A6Ž .

p V Vmax max

respectively. As was true for the 1-D case, the
stability condition is slightly relaxed for the opti-
mally accurate scheme as compared to the conven-
tional scheme.
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