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Abstract

We previously presented an optimally accurate time-domain finite difference method (FDM) scheme for computing
synthetic seismograms for one-dimensional (1-D) problems[Geller, R.J., Takeuchi, N., 1998. Optimally accurate second-order
time domain finite difference scheme for the elastic equation of motion: 1-D case. Geophys. J. Int. 135, 48—62]. This scheme
was derived on the basis of a general criterion for optimally accurate numerical operators obtained by Geller and Takeuchi
[Geller, R.J., Takeuchi, N., 1995. A new method for computing highly accurate DSM synthetic seismograms. Geophys. J.
Int. 123, 449-470]. In this paper, we derive optimally accurate time-domain FDM operators for 2-D and 3-D problems
following the same basic approach. A numerical example shows that synthetics for a 2-D P-SV problem computed using the
modified scheme are 30 times more accurate than synthetics computed using a conventional FDM scheme, at a cost of only
3.5 times as much CPU time. This means that the CPU time required to compute synthetics of any specified accuracy using
the modified scheme is only 1/47 that required to achieve the same accuracy using the conventional scheme; the memory
required by the modified scheme is 1/18 that of the conventional scheme. We have not conducted computational
experiments for the 3-D case, but we estimate that the CPU time advantage of the modified scheme will be a factor of over
100. The stability condition (maximum time step for a given spatial grid interval) for the various modified schemes is
roughly equal to that for the corresponding conventional scheme. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Waveform inversion is a promising approach to
inversion for three-dimensional (3-D) Earth struc-

_ ture, but requires the ability to make accurate and
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nature of each problem and dataset. It is therefore
desirable to develop accurate and efficient computa:
tional methods for both the time domain and the
frequency domain.

We previously derived optimally accurate * oper-
ators (modified operators) for computation of syn-
thetics in the frequency domain (Cummins et al.,
1994, 1997; Geller and Takeuchi, 1995; Takeuchi et
al., 1996) using the Direct Solution Method (DSM;
Geller and Ohminato, 1994). These modified opera-
tors were derived on the basis of a general criterion
that must be approximately satisfied by optimally
accurate modified operators (Eq. 2.20 of Geller and
Takeuchi, 1995). This criterion can also be applied
to derive optimally accurate modified operators for
finite difference method (FDM) computations in the
time domain. We previously derived modified time
domain FDM operators for a 1-D problem (Geller
and Takeuchi, 1998). In this paper, we use the same
approach to derive modified time-domain FDM op-
erators for 2-D and 3-D problems. (Note that the
derivations in the present paper are not intended to
be self-contained; see Geller and Takeuchi, 1995,
1998, for basic results.) Using these accurate and
efficient synthetics together with algorithms for
waveform inversion (Tarantola, 1984; Geller and
Hara, 1993; Takeuchi et al., 2000) can contribute to
improving our understanding of Earth structure.

Many works (we do not cite particular examples
here) have attempted to derive more accurate FDM
operators by redefining the operators for spatial dif-
ferentiation to minimize numerical dispersion of the
P- and S-velocities. Such efforts have not in genera
met with notable success. However, the Lax—
Wendroff (LW) scheme (Lax and Wendroff, 1964) is
one proposed scheme that has been viewed as
promising by some workers. The details of the LW
scheme and its relation to our approach are discussed
below in Section 5 and elsewhere in this volume by
Mizutani et al. (2000). It is shown that the LW
scheme is similar to the scheme presented in this
paper and by Geller and Takeuchi (1998), but that
our approach appears advantageous, due to greater

. “‘Optimally accurate’’ operators yield the greatest attainable
accuracy for a particular type of scheme (e.g., second order finite
difference) for some particular grid spacing.

ease of application. Also, to our knowledge, it has
never been rigorously established that the fourth
order operators required by the LW scheme actually
exist for general heterogeneous mediain 2-D or 3-D.

Previous workers have generally evaluated pro-
posed computational schemes by presenting theoreti-
cal derivations or conducting numerical tests for the
case of a homogeneous medium, using the numerical
dispersion of the phase velocity as the criterion for
evaluating accuracy. However, seismologists use
computational methods to study wave propagation in
heterogeneous models that approximate the actual
Earth, which is highly heterogeneous. It is therefore
essential to evaluate the accuracy and performance
of computational schemes for the case of heteroge-
neous models.

In contrast to previous studies, the derivations in
this paper are based on the general results derived by
Geller and Takeuchi (1995; 1998) for minimizing the
error of schemes for computing synthetic seismo-
grams. We thus can systematically derive optimally
accurate operators (for a given order of operator and
grid spacing) for heterogeneous mediain 2-D or 3-D.
The modified FDM operators derived in this paper
optimally minimize the numerical dispersion of the
P- and S-velocities as an indirect conseguence of
their minimizing the error of the synthetic seismo-
grams (see Geller and Takeuchi, 1995, 1998). How-
ever, for technical reasons, it would have been ex-
tremely difficult to derive the operators presented in
this paper directly on the basis of minimizing numer-
ical dispersion of P- and S-wave velocities.

2. Modified operators for homogeneous 2-D SH
problem

In this section, we derive modified FDM opera-
tors for the 2-D SH problem in a homogeneous
medium. This is the simplest 2-D case, but other
applications are basically similar. The extension to
the inhomogeneous case is similar to that for the
frequency domain problem (Geller and Takeuchi,
1995) or for the 1-D time domain problem (Geller
and Takeuchi, 1998). The derivation of optimally
accurate operators for the homogeneous 2-D P-SV
problem (Section 3) is also straightforward. Modified
operators for the heterogeneous 2-D P-SV and SH



N. Takeuchi, R.J. Geller / Physics of the Earth and Planetary Interiors 119 (2000) 99-131 101

problems and for a general 3-D heterogeneous
medium are presented in Appendix A.

2.1. Conventional operators

We consider 2-D Cartesian coordinates (X, 2z).
The strong form of the time domain equation of
motion (see Geller and Ohminato, 1994 for a discus-
sion of the strong and weak forms) for the 2-D
homogeneous SH problem is as follows:

92u 9%u 92u
T Mg Mz h (1)
where t is the time, u is the displacement, p is the
density, u istherigidity, and f is the externa force.
The discretized equation of motion can be expressed
as follows:

p

(Ap’r'N’prN - K;()}?’N’prN - K;S’?’N’prN)CprN = 1:p’r'N"
(2)
where ¢, and fy., are the discretized displace-
ment and discretized external force, and Ay prns
Koy and K@y are respectively the dis-
cretized operators for temporal differentiation
( p(d? /3t?)), the second derivative in the x-direction
(w(d%/0x?)) and the second derivative in the z-di-
rection ( w(9?/0z%)). Throughout this paper, the in-

dices p, q, r and p, ¢, r’ denote the x-, y- and
z-grids, respectively (q and g are used only for 3-D
problems), and the indices N and N’ denote the
temporal grids. Summation over repeated indices ( p,
r, N in this case) is implied. For simplicity, we
consider homogeneous grid spacing. The displace-
ment and the external force are discretized as fol-
lows:

Corn = U( PAX,rAz,NAY),
fyon =f(PAX,I'AZ,N'AL), (3)

where Ax, Az and At are the spatia and temporal
grid intervals.

Here, we consider second order FDM operatorsin
time and space. Unlike some previous workers (e.g.,
Alterman and Karal, 1968), we define boundary
elements without using pseudo nodes. We present
operators for a scheme in which displacement is the
only variable, rather than a staggered grid scheme
(e.g., Virieux, 1986) where velocity and stress are
independent variables. A free surface is a natura
boundary condition (see Geller and Ohminato, 1994),
and is therefore automatically satisfied by the weak-
form FDM solution without its having to be imposed
explicitly.

The elements of the conventional operators are as
follows:

z+ Az
z 1
t+ At 2 — Az
z—Az = z+ Az
z+ Az
- (2 2 -2
B (Aﬂ)" Pl a 4
r—Azrx zx x4+ Ax
z+ Az
z 1
t— At z— Az
r— Az = T+ Az
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z+ Az
z
t+ At 72— Az
r—Ax = z+ Az
z+ Az
; z 1 -2 1
z— Az
zr—Ar = z+Azx
z+ Az
z
t— At 2 — Az
r—Ar z z+ Az
2+ Az
z
t
+ At 2 — Az
T—Azx T T+ Az
z+ Az 1
; z -2
z2— Az 1
z—Az z z+ Az
z+ Az
z
t— At 2 — Az
r—Ax z T+ Ax

The above operators are expressed using the following difference stencil:

V4 + AZ AplrlNl(pI_1)(,.'+1)(N'+1) APIT'N,’)’(T,+1)(NI+1) Ap'r’N’(p’+l)(r'+l)(N’+1)
t + At z AplrINl(pl_l)rl(Nl+1) AplrINlplrl(Nl+1) AP'T'N'(F’+1)T'(N'+J)
2= A2 | Apr N -1) (o)) AprNp =)V Ap e N -1) (V1)
z — Az T T+ Az
z + AZ Ap!’.lNl(pl_l)(r:+l)Nl AplrlNlpl(rl+l)NI Ap’r’N’(p'+1)(r’+1)N’
t Z A]‘/rl Nl(pl_ l)rlNl Aplr/Nlpl'.l NI APITINI(pI_’_l)TIA”
2= Az | App N 1) —1)N'__ApriNtp' (e )N Ape! NI (p/ +1)(r'=1)N
T — Ax T z+ Az
z+ AZ Apl,.lNl(pl,_l)(,./+1)(Nv__1) AplrlNlpl(rl+l)(NI_l) Ap’r'N’(p’+l)(r'+l)(N’—l)
t _ At z AP'T’NI(’)'—])T’(N'—]) Ap'r'N'p'r’(N'—l) AplrlNl(ﬂ_‘_l)rl(N!_l)
z— Az APIrINI(pI_l)(rI_l)(NI_l) Ap’r’N'p’(r’—l)(N’—l) Ap'r’N’(p’+1)(r’—l)(N’—-l)
- Az z z+ Az

©)

(6)

(7
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As shown by Geller and Takeuchi (1995), there
are two types of operator error (basic error and
boundary error), but only the basic error has an
important effect on the solution error (the error of
the synthetic seismograms). We therefore discuss
only non-boundary elements and the basic error, and
omit discussion of the difference stencils for bound-
ary elements and the boundary error. The complete
definitions of the operators, including boundary ele-
ments, are given in Appendix B. The conventional
operators (Egs. (4)—(6)) have the following basic
error (Throughout this paper errors are stated only to
lowest order.):

1 3
(8Aynrprn = SK o = 8K P pen ) Coan

At? 92\ 2*u  [Ax? 9\ @d%u
=(EW)PW‘(?TXZ Mo
Az? 92\ d%u
_(?a_zz):u’a_zz' (8)

The criterion for optimally accurate operators is that
their basic error should be zero when the operand, u,
is an eigensolution. However, as the basic error in
Eq. (8) does not vanish when the operand is an
eigensolution, the conventional operators do not sat-
isfy the general criterion for optima accuracy (see
Geller and Takeuchi, 1995, 1998 for details).

2.2. Sability condition for unmodified operators

The standard method for estimating the stability
condition (maximum time step) is to subgtitute a
plane wave solution into the discretized eguation of
motion and derive the condition on At in order for
the numerical solution not to have an eigenfrequency
with a negative imaginary part (e.g., Richtmyer and
Morton, 1967; Alterman and Loewenthal, 1970). This
method is rigorous only for an infinite homogeneous
medium. The stability conditions for a heterogeneous
bounded medium can be rigorously obtained numeri-
caly (Geller and Takeuchi, 1998) by solving a gen-
eralized eigenvalue problem (Golub and Van Loan,
1989). In general, such numerical estimates show
that the stability limit for a heterogeneous bounded
medium is roughly equal to the minimum value of
the stability limit (as estimated using the standard
methods for a homogeneous unbounded medium).

We now derive the stability condition for the
conventional operators for the homogeneous 2-D SH
problem. We assume exp(i o NAt) time dependence
for the eigensolutions:

Corn = CprXP(1 wNAL), (9)

where w is angular frequency, i =v— 1, and Cor IS
the displacement in the frequency domain at X = pA x
and z=rAz(0O<p<N,, 0<r <N,). For simplic-
ity, we consider the case for which Ax= Az The
Fourier transform of Eq. (2) is as follows:

2
(H(l)+H(3))C=P(l—COSwAt)TC. (10)

For the 1-D case, it is easy to write the explicit form
of the matrices in the counterpart of Eg. (10); see
Egs. (30) and (31) of Geller and Takeuchi (1998).
However, for the 2-D or 3-D cases, it is necessary to
map the subscripts for the x- and zgrids into a
single index in order to write the matrices in Eq.
(10); this mapping should be chosen to minimize the
bandwidth of the matrices in Eq. (10) (see Appendix
A4 of Geller and Ohminato, 1994 for details). The
elements of the matrices in Eqg. (10) for a typical
interior grid point are shown below in Egs. (11)—(13);
note, however, that these elements are not contigu-
ous in the actual mapped matrices. Also, we do not
show explicitly the elements for grid points on exte-
rior boundaries or corners.

2+ Az
z 1
T = »px z— Az
z—Ar = z+ Az
(1D
z+ Az
H(l) - LX z -1 2 -1

Azx? z—Az

r—Az z T+ Az

(12)
z+ Az -1
(3) _ 172 zZ 2
H Az | z-Az -1
z—Azx z z+ Az
(13
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On the other hand, we can define the following
generalized eigenvalue problem:

(HP +H®)c=2aTc, (14)

where A is the eigenvalue. The dements of the
(I,nth eigenvector of Eq. (14) for the matrices for a
homogeneous medium (Egs. (11)—(13)) are

p|7T rnr
In) _ In —
e = (clm) _(cos N )(cos N ) (15)

X z
and the corresponding eigenvalues are given by:

2V.2(2—cl —cn)
In ™ AZZ

(16)

where

Fry nar
cl=cos—, cn= Cos-9 (17)

X 4

The maximum eigenvalue, A, Of this eigenvalue
problem is A, = 8V.2/Az? (V, is the Swave ve-
locity; V, = y/u/p) when cl =cn= —1in Eq. (16).
Following the same approach as for the 1-D problem
(Geller and Takeuchi, 1998), we derive the following
stability condition for the 2-D SH conventional oper-
ators:

At Az
< .
V2V,

This is the well-known Courant stability condition
for this problem. Omitting the derivation, the stabil-
ity limit for the case when Ax+ Az is

(19)

AxAz
AM<—F—n—— (19)

T VYA +AZZ

2.3. Standard modified operators

In contrast to the 1-D problem (Geller and
Takeuchi, 1998), there are several possible formula-
tions of the modified operators for the 2-D problem.

In this section, we derive the explicit elements of the
simplest possible form of the modified operators,
which we call the standard modified operators. We
also derive the stability condition for the standard
modified operators.

Modified operators A, K& and K@ satisfying
the general criterion for optimal accuracy (Geller and
Takeuchi, 1995) should, rather than Eq. (8), instead
have the following basic error:

(A wprn = K G npen = 8K pen ) Corn
At? 3% Ax® % AZ? ¥
=\ 7ot ozt 7 2
12 ot 12 ax 12 oz

e e e P 20
P Moz Mg (20)

9%u 9%u 9%u
X

The r.h.s. of Eq. (20) will vanish when the operand
is an eigensolution, as the bracketed term is the
homogeneous equation of motion. Operators having
the basic error given by Eq. (20) thus satisfy the
general criterion for optimal accuracy.

We now derive modified operators that have the
basic error specified by Eq. (20). Consider the time
derivative operator A. The basic error for the con-
ventional time derivative operator A (Eqg. (4)) has the
desired basic error (specified by Eq. (20)) propor-
tional to At?:

At? 92\ 9%u
6Ap’r’N’prNCper (Eﬁ)pw (21)

(see Eq. (8)), but it has no error proportional to A x?
or Az2. In contrast, the modified operator A’ should
have the following basic error which is dependent on
Ax? and Az? aswell as At

/
6Ap’r’N’prNCprN

AZ? 9%\ d%u
12 922 )P
(22)

Ax® 92

At? 92
= ——+
12 ax?

=—==+
12 at?
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(see Eq. (20)). Note that this desired basic error for
the modified operator is obtained by having all of the
derivatives in the parentheses in Eq. (20) operate on
the first term in the square brackets. In other words,

r_ 14
A= (144At2) x|t

z+ Az 1 10 1
z 10 100 10
t+At z— Az 1 10 1
r—Azx = z+ Az
z+ Az -2 -20 -2
z —20 —200 -20
z —Az -2 -20 -2
z— Az T T+ Az
z+ Az 1 10 1
z 10 100 10
E-AtL Az 1 0 1
r — Az r z+ Az

We derive the modified operators K and K®' in a

similar fashion from Eq. (20), by having al of the respectively.
operators in the parentheses in Eq. (20) operate on

z+ Az 1 -2 1
z 10 -20 10
t+At z—- Az 1 -2 1
T - Az x T+ Az
z+ Az 10 -20 10
KO _ ( n ) y z 100 —200 100
144Az? z— Az 10 -20 10
r— Az T T+ Ax
z+ Az 1 -2 1
z 10 -20 10
— At
t-a z— Az 1 -2 1
Tz — Az T T+ Ax
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we smear out the conventional operator A in the x-
and zdirections to obtain the modified operator A',
as shown below. The explicit form of the modified
operator A’ is as follows:

(23)

the second and third terms in the square brackets,

(29)
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We refer to the operators in Egs. (23)—(25) as the
standard modified operators. Other possible defini-
tions are discussed in Section 2.4.

Next, we derive the stability conditions for the
standard modified operators. The Fourier trans
formed discretized equation of motion for the stan-

z+ Az 1 10 1
z -2 -20 -2
t+ At z— Az 1 10 1
r—-Ax z z+ Az
z+ Az 10 100 10
z -20 —200 -20
t
z— Az 10 100 10 25
z— Az z T+ Az
z+ Az 1 10 1
z -2 -20 -2
t— At
A z— Az 1 10 1
z—-—Az z= T+ Az
dard modified operators is as follows:
5 1 ) )
— + —coswAt |(HY + H®)c
6 6
2
= P(l—COSwAt)T'C, (26)

where the matrix elements for the interior grid points
are as follows:

z+ Az 1 10 1
v _ (P z 10 100 10
T = (144) *laoazl 1 10 1 27
r—Az =z T+ Az
2+ Az -1 2 1
' _ M ) z 10 20 -10
H (12Ax2 *leoaz| 1 2 a4 (28)
rz—Az z x4+ Az
z+ Az -1 2 -1
@ - (_H* z -10 20  -10
H (12A22) 12— Az -1 2 -1 (29)
z—Axz T x4+ Ax
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On the other hand, we can define the following
eigenvalue problem:

(HY +H®)ec=XT'c, (30)

where X' is an eigenvalue. The (I,n)th eigenvector of
Eq. (30) for the matrices Egs. (27)—(29) is given by
Eqg. (15), and the corresponding eigenvalue is:

Ajp =

12V2 (1-d
( (31)

1-cn
A 72 )

+
5+c 5+4cn

where ¢l and cn are defined in Eq. (17). We can see
that the maximum eigenvalue of Eg. (30) is X, =
12V.? /A x? when

c=cn=-1

in Eqg. (31). From the above relations, we can find
that the stability condition for the above modified

107
operators (Egs. (23)—(25)) is
A Ax 32
t< .
2V, (32)

This is the same condition as that for the conven-
tional operators of Eg. (18). Omitting the derivation,
the stability limit for the case when Ax+# Az is

AxAz

At —F———,
V.VA X%+ A 72

which is also the same as Eq. (19).

(33)

2.4. Non-standard modified operators

We consider below which other definitions of the
modified operators are possible and what their stabil-
ity conditions are. For the homogeneous 2-D SH
problem, the definitions of the modified operators for
K® and K® are unique (Egs. (24) and (25)), but
there are various possibilities for the modified opera-
tor A'. The modified operator with the smallest num-
ber of non-zero elements is as follows:

z+ Az 1
z 1 8 1
t+ At 2 — Az 1
r—Ax z T+ Az
z+ Az -2
"no_ p z -2 -16 -2
A _(12At2)x t 2— Az —2 (34)
Tz — Az z z+ Az
z+ Az 1
z 1 8 1
t- At z— Az 1
z—Azx = z+ Az
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Any linear combination of Egs. (23) and (24) with
weights summing to one will satisfy Eqg. (20), and all
such operators are possible definitions of the modi-
fied operators for the second time derivative:

A" = al + (1— a)A", (35)

where « is an arbitrary constant.

Next, we derive the stability condition for a
scheme using the non-standard modified operator A”
together with K@ and K@ (Egs. (35), (24) and (25)
respectively). First, we derive the stability condition
when o =0 in Eq. (35), i.e, the stability condition
for A" (Eq. (34)), KW and K@, For simplicity, we
assume Ax= Az The discretized equation of mo-
tion is:

5 1 , .
(— + —COSwAt)(H(l) +H®)c

6 6
2
= E(l — coswAt)T"c, (36)
where
z+ Az 1
w_ [P z 1 8 1
= (12) % z— Az 1
r—Ax = z=+ Az

(37)

and HY and H®' are given in Egs. (28) and (29).
On the other hand, we can define the eigenvalue

problem

(HY +H®)c=AT"c (38)

The (1,n)th eigenvector of Eq. (38) for the matrices
of Egs. (28), (29) and (37) is given by Eq. (15), and

the corresponding eigenvalue is.
. 2V72 (1—d)(5+d)+(1—cn)(5+cn)
" AZ2 4+cl+cn

(39)

where cl and cn are defined in Eq. (17). The maxi-
mum eigenvalue is X, = 16V.?/A z?. From these
relations, we can see that the stability condition is
3 Az
At<y/ - —. (40)
8 V.
As compared to the stability condition for the con-
ventional operators (Eq. (18)) or standard modified
operators (Eg. (32)), the above condition is stricter
by a factor of /3/2.

If we change the value of « in Eq. (35), we can
achieve a laxer stability condition than that for the
standard modified operators. In general, the (I,n)th
corresponding eigenvalue for the non-standard modi-
fied operators Egs. (28), (29) and (35) is:

2
s e s e e d ra (4D
where cl and cn are defined in Eg. (17). We can
derive the stability limit from the maximum value of
Eq. (41) for any «. For example, if we set a=5in
Eq. (35), the stability condition becomes

At< —, 42
<y (42)
which is larger by a factor of 2 than Eg. (18).
Numerical experiments (see Section 5) confirm that
the stability limits given by Egs. (40) and (42) are
accurate.

3. Modified operators for homogeneous 2-D P-SV
problem

In this section, we derive the modified operators
for the 2-D homogeneous P-SV problem. The equa-
tion of motion is as follows:

02 02 92 02
o (AT Tk Az Mamx M_m )
92 92 92 a2 || Y: f,|
~Aaax T Moz o P (AT 2M g
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where u,, u,, f, and f, are the x- and z-compo-
nents of the displacement and external force, respec-
tively, and A and w are the Lamé constants. The
discretized equation of motion using the modified
operators is as follows:

(Apernrypriwy = (44)
where ¢\, and f,,. are the discretized vector
displacement and vector external force, and
Ay rnry prvy aNd Kl orn, are the modified oper-
ators for temporal and spatial differential operations,
respectively. The indices y= 1 or y' = 1 denote the
x-component, and vy = 3 or v’ = 3 denote the z-com-
ponent. The displacement and the body force are
discretized as follows:

Corna = Ux( PAX,rAz,NAt),

! —
Kl rnry priy ) Cory = fprernry s

Cornz = U,( PAX,rAz,NAL), (45)
fornn = (PAXI'Az,N'At),
foons =f( PAX,I'Az,N'At).

Because the modified operators Ay priy s

K;J 1y prN1 and Kornaprns e t_he s_econd deriva-
tive operators in the t-, x- and z-directions, they can
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Alp'r’y’N'prNy 8 Apr N’prN (46)
— )
K;)’r’N’lper - K:)r "N’prN + Kpr "N’prN
— 1)
K;)’r’N’BprNS_KérNprN+KperrN (47)
where 6, is a Kronecker delta, Ay prns

Ko and Ko are given by Egs. (23)-
(25), and K,(DZ?N orn @nd KV are obtained by
replacing w in Egs. (24) and (25) by (A+2uw).

Next, we define the modified operators
Kyrnaprns @d K yzpen, Which approximate the
mixed differential operators in the x- and zdirec-
tions. If we define modified operators K )., and
K nprn  for the operators A(o? /axaz) and
w(9? /9x0z), we have:

Kp’r'N’lprN3 = Ké'?’N'prN + Kper r'N"» (48)

KprN3prN1 Kperr N’-i_K

Note that the order of the indices p'r'N’ and prN
are reversed in some of the above operators We
begin by deriving Kpr Nprn- AS K® $Vnrpen CaN be
defined by replacing A in KprN prn DY w, @ de-
tailed derivation is unnecessary.

perrN

be defined in a similar fashion as for the SH case. The conventional operator K.y for the 2-D
homogeneous P-SV prablem is given by
z+ Az
t+ At ‘
z— Az
z—Az z z+ Az
z+ Az -1 1
A z
) =
K (4Aa:Az) o I | YN -1 (49)
r—Axz x z+ Az
2+ Az
r4
t— At 2 — Az
z—-—Az z x4+ Az

The operator error of the above operator is

Ax? 92 AZ? 9\ d%u,
Ko%= | 5 5 * 5 922 | Moz
(50)

The error in Eq. (50) does not match the operator
error desired for the modified operators, because it
does not include an error proportional to At? and
because the coefficients of the error proportional to
Ax? and Az? are 1/6 rather than 1/12. The opera-

tor error of Kpﬁ ‘nprn Should be as follows in order
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to match the operator error of the other modified
operators to second order:

SKSZ’N'prNCper
At? 92
12 ot

AZ% 9 9%u
12 8722

Ax? 9?
12 9x

X

X0z
(51)
As noted by Geller and Takeuchi (1995), a modified
first-order derivative operator having the above basic
error must be defined using a four-point stencil

rather than a three-point stencil. The explicit form of
the modified operator is either of the following:

5 A 3 9 A
——u(x— - — + —u( x+
I u(x—Ax) B u( x) o u( x X)

1 Ax? d® \du
—Eu(x+2Ax)= 1+?W X’
(52)
1 9 3
ﬁu(x—ZAx)—ﬁu(x—Ax)JrEu(x)
5 Ax? d? \ du
+Eu(x+Ax)= l+?m)a (53)

The above two definitions are equivalent; in the
frequency domain DSM formulations, we choose the

definition that does not increase the bandwidth of the
total matrix operators (see Geller and Takeuchi,
1995). This is because we solve a global system of
simultaneous linear equations in the frequency do-
main DSM formulation, and it is important to mini-
mize the bandwidth of the matrices to optimize
computational efficiency. In the time-domain FDM,
we do not solve global system of simultaneous linear
equations. We instead multiply the matrices (A’ — K”)
by the displacement vector (c) to take local finite
differences. Thus minimizing the number of non-zero
elements (rather than minimizing the bandwidth) is
critical. Both Egs. (52) and (53) have an equa
number of non-zero elements, and both definitions
are equivalent in terms of computational efficiency.
Here we choose Eq. (52).

The simplest way to define modified operator

whose operator error is given by Eq. (51) is

1. define a first order derivative operator in the
x-direction like Eq. (52);

2. define a first order derivative operator in the
z-direction like Eq. (52);

3. define an identity operator whose operator error
is (At?/12)(9? /0t?) by smearing out the ele-
ments in the t-direction.

and then combine 1-3. The resulting modified oper-
ator K® is as follows:

z+ 24z 5 3 -9 1
z+ Az —45 -27 81 -9
t+ At z 15 9 -27 3
z— Az 25 15 -45 5 -
T — Az r z+Azr z+2Ax
z+2Az2 50 30 -90 10
A z+ Az —-450 =270 810 -90
KO = (~—-——) x| ¢ z 150 90 270 30 (54)
1728AzAz 2—Az | 250 150  —450 50
T — Az T r+ Axr xz+2Ax
z+2Az 5 3 -9 1
z+ Az —45 =27 81 -9
t— At z 15 9 =27 3
z—- Az 25 15 —45 5
T — Az T z+Axr z+2Az
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The results in this section combined with those in
Section 2 give al of the modified operators needed
for the homogeneous 2-D P-SV problem. The exten-
sion of this derivation to the inhomogeneous case is
straightforward. The explicit form of the operatorsis
given in Appendix C.

The eigenvalue and stability condition cannot be
derived analyticaly even for the homogeneous case,
because complex P-SV coupling occurs at the
boundary. But the stability condition can be ex-
pressed as a small perturbation with respect to the
condition for unbounded (or periodic) medium which
can be derived analytically. This is very similar to
the stability condition for the inhomogeneous medium
(see Geller and Takeuchi, 1998). The stability condi-
tion for the homogeneous 2-D P-SV conventiona
operators is

A X
At< — + € (55)

BRAAEAYS

for the case of Ax= Az, whereV, and V are P and
S wave velocities and e is a small number which
may be either positive or negative. The stability limit
for the homogeneous 2-D P-SV modified operators
is

V6 A X
At<
\/6(vp2+v52) + (V2 - V2)

+ €. (56)

But in all cases

V6 Ax

6 A X
\/6(vp2 +V2) + (V2 - V&) = \/; NZ+v2

Ax
=0.926————.
YV + Vs

(57)
For a Poisson solid, for which A =pu and thus
V.7 =3V.?, we have
At (modified 12

o : ) = 75 ~0.96L. (58)

At . (conventional ) 13

Egs. (57) and (58) thus show that the stability limit
for the modified operators is not appreciably less

than that of the conventional operators. Numerical
tests (not presented in this paper) confirm the above
results.

4. Predictor—corrector scheme using modified op-
erators

Note that in this section, 6A and 6K denote the
difference between the modified and conventiona
operators rather than the error of the operators A and
K. In this section, we present a computational scheme
using the modified operators. We presented a compu-
tational scheme for the 1-D problem in our previous
paper (Geller and Takeuchi, 1998, Section 4), but the
scheme presented below is more efficient for 2-D or
3-D problems.

The FDM equation of motion using the modified
operators A’ and K’ can be written as follows:

(A —K')c=f. (59)

In general, solving Eq. (59) directly yields an im-
plicit scheme, because the modified operator (A’ —
K’) has multiple non-zero elements for time t + At
(see Egs. (23)—(25) for the homogeneous 2-D SH
problem and Egs. (23)—(25) and (54) for the homo-
geneous 2-D P-SV problem).

To avoid the need to use an implicit scheme,
Geller and Takeuchi (1998) use a predictor—correc-
tor scheme for the 1-D problem. First, they solve the
discretized equation of motion using the conven-
tional operators A and K, and predict the wavefield
at the next time step:

(A—K)co=f. (60)

As there is only one non-zero element for time
t+ At in each of the equations for the conventional
operators (see Egs. (4)—(6) for the homogeneous 2-D
SH problem and Egs. (4)—(6) and (49) for the homo-
geneous 2-D P-SV problem), Eg. (60) can, as is well
known, be solved using an explicit scheme. Next,
they solve the following equation for the correction,
oc:

(A—K)dc= —(8A —6K)c?, (61)
where
SA=A—A, 6K =K' —K. (62)
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Finaly, they add the predicted wavefield and the
correction to obtain the final value of the wavefield:
c=c’+éc. (63)
However, Eq. (61) is not efficient for 2-D or 3-D
problems, because 6A and 6 K do not have a simple
form for these cases. We obtain a more computation-
aly efficient scheme by substituting Eq. (62) into
Eq. (61):

(A—-K)dc=—(A—-K")c’+ (A—-K)c? (64)
and then subgtituting Eq. (60) into Eq. (64). The
resulting equation is as follows:

(A—-K)dc=—(A—K")c+f. (65)
Eq. (65) is more efficient than Eq. (61) because the
forms of A’ and K’ are simpler than 6A and 6K.

Almost al of the elements of f will be zero for
most applications.

5. Relation between optimally accurate scheme
and LW scheme

LW schemes (Lax and Wendroff, 1964) are fre-
quently referred to as highly accurate schemes be-
cause of the apparent higher order accuracy of the
temporal and spatial derivative operators. However,
such statements are based on the apparent accuracy
of the numerical operators rather than the accuracy
of the numerical solutions. Furthermore, such state-
ments are based on formal accuracy estimates for a
homogeneous medium, whereas what one realy
wants to know is the accuracy of the solutions
obtained using LW schemes for a heterogeneous
medium. We consider this question in this section,
and also discuss the relation between our scheme and
LW schemes. We rely in part here on the conclu-
sions reached by Mizutani et al. (2000) for the 1-D
case.

Mizutani et al. (2000) showed that the LW scheme
for the 1-D case satisfies the condition for optimal
accuracy (Geller and Takeuchi, 1995). However, they
also pointed out that the solution error of what is
frequently referred to asthe O(At*,A z*) LW scheme
is actually only second order, and that this scheme is
essentially equivalent to the optimally accurate
scheme of Geller and Takeuchi (1998). They con-
cluded that our optimally accurate scheme seems to
be somewhat preferable to the LW scheme because

of (i) the greater locality of the stencil, which en-
sures greater efficiency for massive parallel compu-
tations, and (ii) the greater ease of formulating and
programming the scheme for a general heteroge-
neous medium, especially for boundary elements.

In this section, we evaluate the operator error and
solution error of the O(At# A z*) LW scheme for a
general 3-D heterogeneous and anisotropic medium,
and show that the conclusion of Mizutani et al.
(2000) applies in general. There are some variations
among proposed LW schemes. Here, we consider
one widely cited so-called O(At* A z*) LW scheme
(Dablain, 1986):

aV =T H*cN+fN] (66)

bN =T [H(T *HcV)] (67)
At?

cMir=2eN— Mt Arat s —bY, (69)

where ¢V, aM and bN are, respectively, the dis-

cretized wavefields for u,, 82u, /dt? and 0*u, /ot* at
the Nth time step, f " is the discretized force term
for f; at the Nth time step, T and H are the spatially
dependent parts of the second-order conventional
temporal and spatial derivative operators (A and K,
respectively) for a 3-D heterogeneous and anisotropic
medium, and H*" is the spatially dependent part of
the fourth-order spatial derivative operator K " for a
3-D medium.

To estimate the operator error we derive the
discretized equation of motion for the LW scheme
given by Egs. (66)—(68) in a form similar to that of
Eq. (2) or Eq. (44). Substituting Egs. (66) and (67)
into Eq. (68) and multiplying both sides by T /At?,
we obtain

N+1 2C _{_CNfl

At?
At?
—H4tth——2H(T’1HcN)=fN. (69)
This can be transformed as follows:
2
A—K*M— —p KK |c=Tf, 70
( v KK (70
where p~! is an operator whose explicit elements
are
,l 1
(P ) warnparn = 6p pOqq0rr Oy (71)

pq
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Thus, the equivalent discretized equation of motion
is as follows:

(A—KLW)c=f, (72)
where

LW 4th At? -1

KW =K +§p KK. (73)

Using the Born approximation, we can derive the
relation between the solution error 6c¢ and the error
of the operators 6A, 8K as follows:

(A9 —K©®)sc= —(8A - 6K™)c®,  (74)

where A© and K@ are exact operators, and c@ is
the exact solution. We evaluate the operator error,
i.e, ther.h.s. of Eq. (74). First, we evaluate the basic
error of each term on the r.h.s. of Eq. (74) to second
order:

o At? 9% [ 9%u At? LA OAOO)
oA C =—"7 = | ===P APAY

12 ot ot 12

(75)
At? At?

SK WO — —p IKK c© = —p IKOK O©c©
12 12

(76)

Substituting Egs. (75) and (76) into the r.h.s. of Eq.
(74), we evaluate the operator error as follows:

—(8A — 8K W) c®
tZ
=~ p IAOAOCO

12
t2
+ fp_lK OK Oc©®
At?
= — _p*l(A(O)A(O) —K (O)K(O)) c©®
12

2

- _ A_tpfl[Aw)K(O) — K©pAO
12

+(A® + K@) (A® — K (0>)] )

2

— Al_tzp—l(A(O) + K(O))(A(O) — K(O)) c©®.

(77)

Asther.h.s. of Eq. (77) is equal to zero when ¢©
is an eigensolution, the LW scheme is an optimally
accurate scheme. However, we show below that the
solution error of this optimally accurate scheme is
second order rather than fourth order. We estimate
the solution error of the LW scheme using the results
of Geller and Takeuchi (1995; Section 6). From Egs.
(74) and (77), we obtain the following relation:

(A(O) _ K(O)) &c
At?
= — _p—l(A(O) + K(O))(A(O) _ K(O))C(O).

12
(78)

If we express Eq. (78) in the frequency domain using
the normal mode basis normalized so that p is an
identity matrix, we obtain

At?
(wz - w%)ﬁcm = — —(w2 + wrﬁ)(wz - wf,)cm,

12
(79)

where o, is the eigenfrequency of the mth mode.
Note that summation over repeated indices is not
implied in Eq. (79). When o is close to o, we
obtain the following relation:

At? . w?At?
—_— + ~
AT (0 +on)~—

As shown by Geller and Takeuchi (1995), the
r.hs. of Eg. (80) is an estimate of the relative
solution error. Thus, the expected solution error for
the LW scheme is

oc w?At?

=6 (81
for a harmonic source with angular frequency w. On
the other hand, the solution error of synthetic seis-
mograms computed using our optimally accurate op-
erators is as follows:

oc| wAt?2+]kI’AZ?

0|~ 12 ’ (82)
where |k| is a representative absolute value of the
wavenumber. Comparing Egs. (81) and (82), we see
that the solution error for our optimally accurate
scheme and the solution error for the LW scheme are
roughly equal when both use the same grid spacing.

oc,

C

(80)
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There are some additional questions regarding the
LW scheme. In the above formulation, we assumed
that H*" and K“" were exact to third order (i.e,
that the lowest order non-zero error terms were
fourth order) and thus make no contribution to the
second-order error. But, in general, derivations of
so-called higher order operators assume a homoge-
neous medium, and the accuracy of such operators,
especialy for boundary elements, is in question for a
general heterogeneous medium with sharp internal
discontinuities. To our knowledge, no rigorous
derivation of higher order operators H*" for general
heterogeneous media has ever been published, and it
is far from clear that they necessarily exist. Resolv-
ing this question is an important topic for future
research. A quantitative comparison of performance
between a rigoroudy derived LW scheme for such
general heterogeneous media and our optimally ac-
curate scheme is thus a topic for future research.

Some readers may question why the LW scheme
has a second order basic error (r.h.s. of Eq. (77)), in
view of the fact that it is frequently characterized as
a ‘‘higher order scheme.’”” The explanation is as
follows. This error is caused by the approximation
used in Eg. (67), which is the equation to evaluate
9*u, /0t* in discretized form. The exact evaluation is
as follows:

*u, 1 9%u, | 0%,

=7~ o\ Gz | T ae

it p as ot
1

1
=1 Giju ;{(ij’k’l’uk’,l’),i’+fk}

p

J

(83)

1
+ ) 1
atz}

where C;,, is the elastic constant. But Eqg. (67)
omits the f, and 9%f, /9t? term. Because these terms
have a second-order contribution, the net operator
error is second order. Some LW schemes appear not
to use this approximation, and thus their basic error
for homogeneous media has higher order accuracy
(eg., lgd et al., 1995). But the extension of this
result to heterogeneous media would require the
assumption that H*" is exactly fourth order, so a

rigorous derivation of such operators, including the
boundary errors, is another important research topic.
In summary, it seems questionable to characterize
the LW scheme as a ‘‘higher order scheme,”’ since
the solution error for the so-called O(At*,Az%) LW
scheme analyzed above is second order optimally
accurate. Furthermore, there seem to be problems in
defining rigorously fourth order H*" operators for
general heterogeneous media with sharp interna dis-
continuities, especially for boundary elements.

6. Numerical examples

We compare the accuracy of synthetic seismo-
grams computed using the conventional and modi-
fied operators for the 2-D heterogeneous P-SV prob-
lem. We consider a heterogeneous medium whose
density p (g/cm®), P-wave velocity V, (km/s), and
Swave velocity V, (km/s) a x (km) and z (km)
are as follows:

p(x,z) =1+ x,/1000

75+3x/40+52/40 0< x <1000
Vo(x.2) = T 14x/1000 (OSZQOOO)

25+ x/40+ z/20
VoD = T 000 (84)

A comparison of the error for synthetics com-
puted using the conventional and the modified opera-
tors is shown in Fig. 1. We use a constant grid
spacing (Ax=Az=2 km), and the length of the
time series is 250 s. The source is a point single
force (f,=f,=1 N a x=z=500 km) with a
Ricker wavelet time history whose central frequency
is 10 s. The receiver is a (x,z) = (300, 500). The
error at the receiver is plotted against the temporal
grid spacing At normalized by the (nominal value of
the) Courant limit for the conventional operators.
The relative error is the ratio of the RMS of the
residua (u; — u{®) and the RMS of the exact solu-
tion u(®. Its explicit definition is as follows:

/Iui — u®@%dt

JlurPdt

Relative Error (%) = X 100.

(85)
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Fig. 1. A comparison of the error of the synthetic seismograms as
afunction of the temporal grid spacing. The temporal grid spacing
is normalized by the nominal Courant limit (Alterman and
Loewenthal, 1970). The diamonds and squares show the error at
the receiver point using the conventional and modified operators,
respectively.

The nominal Courant limit for the conventional oper-
ators for the inhomogeneous P-SV problem (when
Ax=Az)isasfolows(eg., Alterman and Loewen-
thal, 1970):

AX
(vp2 + VSZ)

max

At (86)

courant

However, as noted above and by Geller and Takeuchi
(1998), the actual Courant limit for the conventional
operators for a heterogeneous medium or for a finite
but homogeneous medium is dightly different from
the above limit, and the stability limit for the modi-
fied operators is dightly lower than that of the
conventional operators. The nominal limit predicted
by Eq. (86) is At=0.1206 s, but we found that the
actual limits for this case are At=0.121 s and
At =0.118 sfor the conventional and modified oper-
ators, respectively.

We found (see Fig. 2) that the accuracy of the
synthetics computed using the modified operators is
greatly improved (by about a factor of 30 times as
compared to synthetics computed with the same
spatial and temporal gridding for the conventional
operators) for al values of the temporal grid spacing
used in the numerical experiment. In contrast to Fig.

2a and ¢ of Geller and Takeuchi (1998), there is not
great improvement in the accuracy of the synthetics
computed using the conventional operators for val-
ues of At near the Courant limit. Thisis an expected
result, for reasons that were explained by Geller and
Takeuchi (1998): for the homogeneous 1-D or 2-D

Modified

UXA/\/V_«W\/JW\[\W

Uz

X residual (0.36%)

z
x residual*30 (0.36*30=11%)

7z — AN VAN

Unmodified

UXJ\W[M\/\NW

Uz

residual (11%)

zZ — NN NN\

UXJ\NMNJ\/M\/\/JW

Uz

Exact

50s

Fig. 2. A comparison of the waveforms and the residuals for P-SV
synthetics in a heterogeneous medium computed using the modi-
fied and conventional operators. These are synthetics for the case
when the temporal grid spacing normalized by the Courant limit is
0.5. The upper two traces show the x- and z-components of the
synthetics, and the next two traces show the x- and z-components
of the residuals (synthetic waveforms minus exact waveforms) for
synthetics computed using the modified operators. 30X enlarge-
ments of the residuals are also shown. The next four traces show
the synthetics and residuals for synthetics computed using the
conventional operators. The last two traces show the almost exact
synthetics (synthetics computed by very fine grids). All traces are
plotted using the same vertical scale.
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SH problems, the basic error of the temporal derive-
tives and the basic error of the spatial derivatives
fortuitously cancel at the Courant limit when the
operand is an eigensolution. Even for heterogeneous
1-D or 2-D SH problems, the errors due to the
temporal and spatial derivatives will approximately
cancel if we choose an appropriately spatialy vary-
ing grid spacing. However, for the 2-D P-SV prob-
lem (or general 3-D problem), P and S waves, which
have different wavenumbers, exist smultaneously in
the wavefield. The temporal and spatial errors will
never cancel simultaneoudly for both types of waves
using the conventional operators. Thus, using the
modified operators is especially advantageous for the
P-SV or 3-D problems.

Synthetics computed using the conventional and
modified operators are shown in Fig. 2. We show
synthetics for the case At/Aty .y = 0.5. The re-
quired CPU times were 3830 and 13300 s (on an
UltraSPARC, 170 MHz) for the conventional and
modified operators, respectively. About 3.5 times
more CPU time was required for the modified opera-
tors, but about 30 times improvement in the accuracy
was obtained. Because the CPU time is proportional
to the cube of the grid spacing, while the error is
proportional to the square of the grid spacing, this
means a 30%/2 /3.5 = 47 times decrease in the CPU
time required to obtain synthetics of any given accu-
racy using the modified operators rather than the
conventional operators. We estimate that the advan-
tage of the modified operators will be a factor of
over 100 for 3-D problems (see Appendix D), but we
have not yet confirmed this by numerical tests.

We conducted some simple numerical tests of the
standard and non-standard modified operators (see
Egs. (23), (34) and (35), and accompanying discus-
sions). The goal of these tests was to verify the
general results on stability (e.g., Egs. (41) and (42))
rather than to determine the optimum value of « to
maximize computational efficiency. The latter re-
mains a subject for future work. The calculations
described in this paragraph were al carried out for
At = 0.7At,,,(conventional). Fig. 3a shows the sta-
bility limit (verified through numerical experiment)
for the alternative modified operators for various
vaues of a (see Egs. (35), (39)—(42)). Fig. 3b
shows the variation of the relative accuracy as a
function of «, normalized to the relative accuracy

(a) **
x 125 F
(]
i3
-
4 1
0.75 L
0 1 2 3 4 5
(b) 1s
)/
(o]
L -
S
w 125 r
(0]
2z
©
[0)]
oc
0.75 L
0 1 2 3 4 5
1.5
(c)
o 13
£
'—
S 1 _—______.__—o—/\
o
(&)

0.75

Fig. 3. (a) Stability limit for various values of « (see Eq. (35)).
(b) relative error (for constant grid size) as a function of «. (c)
CPU time (for constant grid size) as a function of «. Each plot is
normalized by the results for the standard modified operators
(a=1).

for the standard modified operators for the same grid
size. Fig. 3c shows the CPU time, normalized to the
CPU time for a scheme using the standard modified
operators. Here, we consider the 2-D SH problem for
the heterogeneous medium whose density and S
wave velocity are given in Eg. (84). We use constant
grid spacing (Ax=Az=2 km) for all cases.

We can see that the stability limit increases
dlightly, while the accuracy degrades dlightly, as «
increases. There is no significant difference in CPU
time. The stability limit is essentially equal to the
predicted value. The reason that the accuracy de-
grades for larger « is probably that higher order
errors increase as « increases. There thus seems to
be a trade-off between accuracy and the stability
limit; the standard modified operators (o = 1) appear
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to be a reasonable choice, but we have not yet
ascertained the optimum value of «.

7. Conclusions and discussion

We derived modified time domain FDM operators
for a genera heterogeneous medium and confirmed
that the accuracy of the synthetic seismograms com-
puted using the modified operators was greatly im-
proved as compared to the conventional FDM opera-
tors. We also confirmed that the CPU time required
to achieve any given level of accuracy was greatly
reduced by using the modified operators. In this
paper we considered an isotropic and elastic medium,
but extension to an anisotropic medium should be
straightforward. The extension the anelastic case
(Emmerich and Korn, 1987) is an important future
topic, but appears to be relatively straightforward.

In this paper, we presented operators for a medium
without sharp internal discontinuities. Discontinuous
boundaries coinciding with grid boundaries can be
handled by ‘‘overlapping’’ the operators in a
straightforward fashion (see Geller and Takeuchi,
1995). However, developing methods for accurate
handling of discontinuities between nodes is an im-
portant topic for future research.

A variety of approaches exist for computing syn-
thetic seismograms. These may effectively be sepa
rated into quasi-analytic methods (e.g., reflectivity:
Fuchs and Muller, 1971, moda superposition:
Takeuchi and Saito, 1972, the DSM, e.g., Takeuchi
et al., 1996) and purely numerica methods (e.g.,
finite difference, finite element, pseudo-spectral). The
choice between these two classes is depends on the
nature of the problem. For example, the former class
of methods is obviously more appropriate for a
flat-layered medium. However, the distinction be-
tween analytic and numerical methods can become
fuzzy. Consider, for example, a laterally homoge-
neous medium with arbitrary vertical heterogeneity.
For such a medium, we would use separation of
variables to break the problem up into a series of
decoupled problems for each distinct wavenumber or
harmonic, and then solve these decoupled 1-D prob-
lems numericaly. On the other hand, for general
arbitrarily heterogeneous media purely numerical
methods will probably be preferable.

Suppose we have decided to use a purely numeri-
cal method, and are trying to decide which is best.
Generally speaking, second-order FDM schemes have
been considered inferior to fourth order (in space)
FDM schemes or pseudo-spectral schemes. Thisview
may be correct if consideration is limited to conven-
tional second-order FDM schemes. However, the
modified second order FDM schemes presented in
this paper have significant advantages over other
types of schemes. Memory access is more localized
than in higher order FDM schemes, and much more
localized than in pseudo-spectral schemes, which
rely on FFT differentiation. This is a major advan-
tage for applications on highly parallel machines.
Also, pseudo-spectral methods have difficulty in
handling sharp boundaries, while FDM schemes do
not (Mizutani et al., 2000). Findly, it appears that
nominally fourth order (or higher) FDM schemes
may actually be of lower order accuracy due to
boundary errors, and that the problem of boundary
errors may preclude the possibility of developing
modified operators for higher order FDM schemes
aong the lines used in this paper for the second
order case. We therefore think that the modified
second order FDM operators derived in this paper
may well prove preferable for a broad genera class
of problems.
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Appendix A. Notation

For simplicity, we assume constant grid intervals
Ax, Ay, Az and At. We also assume the medium
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has no sharp interna discontinuities. We denote the
displacement u,(pAx, gAy, r'Az, N'At) and the
external force f,(pAx, qAy, r'Az, N'At) by
Cygry and iy, respectively (y' =1, y' =2 and
v’ = 3 denote the x-, y- and z-components, respec-
tively), where0<p' <N,,0<q <N, and0<r'<
N,. We denote the density p(pAx, gAYy, r'Az),
and the Lamé constants A(p'Ax, Ay, r'Az) and
p(PAX, gAY, r'A2) &s pygr, Ayqe ad wyq,
respectively. To express matrix elements and schemes
in a compact form, we use the following simplified
notations.

Pooo = Ppgr

Moo= ( My - ygr T Mp/q/r’)/z

M 100 = ( Mp g + 124 p'+1)q’r’)/2
Moo= ( Myqe-1 T /"Lp'q'r’)/z
Poo+= (Byqr T Hpsnga+n) /2

The other type of notations like wy_q, A_ g, €tC. are
defined in a similar fashion. For the 2-D SH and
P-SV problem, we omit ' and its related indices
(e.g., second index of A_g,,) because we assume
homogeneous dependence in the y-direction. For the
2-D SH problem, only y' = 2 appears, so we further
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omit the index y'. We denote replacement (like the
equal sign in a Fortran program, as opposed to
mathematical equality) by a left arrow (<« ).

Appendix B. Explicit formsfor heterogeneous 2-D
SH problems

First, we show the explicit form of submatrices of
modified operators (Egs. (23)—(25) for homogeneous
case) for heterogeneous medium using the stencils.
We show the boundary elements also. Next, we
show the total conventional and modified operators,
and numerical scheme using these operators. In these
discussions, we consider only non-boundary ele-
ments to show the required number of floating point
operations clearly. Finally, we compare the number
of floating point operators between our modified
scheme and conventional scheme.

B.1. Submatrices of the modified operators

B.1.1. Non-boundary elements

First, we show the non-boundary elements of
submatrices of modified operators. The explicit ele-
ments of Ay K§hwpew @nd Koy for
r'+1, N,and g # 1, N, are as follows:

z+ Az 1 10 1
z 10 100 10
EHAL Az 1 0 1
z — Az x z + Az
z+ Az -2 —-20 -2
' P00 z -20 —-200 -20
= (144At2) x|t z—Az| -2 -—20 -2 (87)
r— Az x T+ Az
z+ Az 1 10 1
z 10 100 10
e I PV 10 1
r— Az z z+ Az
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z+ Az o —(#t—0 + 1+0) Mo
i+ At z 10p—¢ —10(p—o+ p40) 10u40
z2-Az | po —(#—0 + p+0) E+0
z — Az T z+ Az
z+Az | W0p—g ~10(p—o+p40) 10u40
KO ( 1 ) o z | 100p_g —100(u_o + pr40) 100u40
144Ax2? z—Az | 10p_o —10(u—o+ pyo) 10u4o
T — Az T T+ Az
z+Az | po —(p—0 + p+0) o
B z 10p_0 —10(p—o+ p40) 10p40
t— At
z—-Az | py —(B—0 + K+0) Ko
z— Az T T+ Az
1
" = iz
1442 ) *
z+ Az Ho— 10p0- Ho—
¢+ At z —(po- +po+)  —10(po— + pot) —(po- + pos)
z— Az Ko+ 10p0+ Ko+
z— Az z z+ Az
z+ Az 10p9- 100420-— 10p0—
¢ z =10(po— + pot) —100(po- + pot) —10(po— + po+)
z— Az 1040+ 10040+ 10p0+
r — Az z T+ Az
z+ Az Ho— 10p0— Ho—
t— At z —(mo— + po+)  —10(mo- + pot) —(po- + po+)
z—Az Ko+ 10p0+ Ko+
z— Az x T+ Ax

B.1.2. Boundary elements

Next, we show the boundary elements, the ex-

plicit elements of A wpn: K§lnpen

119

(88)

(89)

K nprn for p=1, p=N,, r'=10r r'=N,. The

p'r

explicit elements for p'=1 and r'# 1, N, are as

and in a similar fashion.

follows. The other boundary elements can be defined
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AI — ( POO
144A¢2

KO — (

K(s)l - ( 1

) x
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z+Az | 5 1
z 50 10
t t
+A z—Az | 5 1
r z+ Az
z+ Az | -10 -2
¢ z -100 —-20
z—Az | -10 -2
T T+ Ax
z+Az | 5 1
z S0 10
t— At
A z—Az | 5 1
T z+ Az
z+AQz | —pyo Ko
t+ At z —10p40  10p40
z—Az | —py H+0
T T+ Az
2+ Az | —10pye  10p49
) % ¢ z —100[l,+0 100/L+0
144Az? 2—Az | =10pyp 10p4g
T T+ Ax
z+Az | —pyp Mo
L At z —10p4+0  10p40
2=Az | —pyo H+0
T T+ Az
z+ Az Spo+ Ko+
N z =5(po~ + no+)  —(Ho- + po+)
z— Az Spo— Ho—
T z+ Az
z+ Az 5010+ 10p0+
ol z =50(po— + po+) —10(po- + po+)
144A22 z— Az 50[1.0.. 10;1.0._
T T+ Az
z+ Az ‘Spo+ Ho+
z =5(po- + pot+) —(po- + po+)
t— At -
z— Az Spg— JL0—
T T+ Az

(90)

(91)

(92)
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Finaly, we show the corner elements. The explicit

The other corner elements can be defined in a similar
edements for p=1 and r'=1 are as follows. fashion.
. z+Az | 5 1
t+ At z 25 5
T T+ Ax
P00 z+ Az | =10 -2
Al = (—————) t -5 -
144A¢2 z 50 10 (93)
T z+ Az
z+ Az | 5 1
t— At z 25 5
T z+ Az
z+ A8z | —pyo K+0
t+ At z =Sp40  Spio
T T+ Az
W’ 1 2+ Az | =10p40 10449
K = <144A::2) t z —50p40 5040 (94)
T T+ Az
z+Az | —pyro pio
t— At z —5[.L+0 5[1..}.0
z T+ Az
z+ Az | Spot Ho+
t+ At 2 ~SHo+  —Ho+
T T+ Az
, 1 2+ Az | 50po4+ 10pu04+
K(a) = ("——.> t z —50[.l.o+ —10[1.0+ (95)
144A 22
T z+ Azx
z+ Az | Spot Ko+
t— At z —Spo+  —Hos
x T+ Az
B.2. Modified / conventional operators (non- O By s 5
boundary terms) pUNDINT TAT S [ - 0(8 10 = 35p)
+ a0 —Oyp + Oy 1)9)]
A = —Sp,pér,r ) By pOnn
PrN'PIN T AT Poo[ (N'+ )N A7 [ Mo— (S(r,,l), - Sr,,)
— 28yt 6(N’—l)N]

+/~"0+(_ Sr’r + 8(r’+l)r)]
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A,p’r’N'prN
8,,6,.
pp-rr
= At2 pOO[S(N'+l)N = 28yyt 6(N’—l)N]
1 10 1
X 55(:)’—1)9"' ESp/p + Eé(rwl)p
1 10 1
X Ea(r'—l)r + E(Sr’r + Ea(r'+1)r (96)
Kp’r/N’prN
_ Sr’rSN’N

T A [“fO(B(p’po_Sp’p)

+M+o(_5p’p + 6 p’+1)p)]

1 10 1
X E(S(NLDN+ESN,N+ES(N,+1)N
1 10 1
X ES(r’—l)r+Esr’r+58(r’+l)r
O, On'
p'p“N’'N
T[ MO—(S(r’—l)r - 8r’r)
+I~LO+(_8r’r + 8(r/+ 1)r)]
1 10 1
X E‘S(N’fl)N—’—ESN’N+ES(N’+1)N

1 10

1
X Es(r'—l)r+ E5r'r+ ES(r'H)r} (97)

B.3. Scheme using the modified operators

B.3.1. Prediction scheme

The values within the large braces **()’" in this
and all schemes hereafter are computed only once
and stored, and thus do not require evaluation at each
time step. Intermediate variables, s}, and s3,/, need
not to be stored for every p’ and r’ simultaneoudly.
If the p-loop is inside the r'-loop, sf),r, is stored
only for the current r’ and sg’,r, is stored only for
r'—1, r" and r' + 1. We assume the most of the
force term elements are zero, and ignore their addi-
tion operations for al FLOPS counting hereafter.

1 _ AN AN
Sor = Clp—1yr — Cpv

3 _ AN AN
Sor = Cpr—1 — Cyfr

pr
2
chrt=2cN, —cht At Koo
pr P 2
Po AX
2

At® pyo

XSy —|— =

P AX

1 Atz /.LO,
Xs o+ —
Ko+ r oy AZ2
2
3 AT po, 3
XSp/rr— ? AZZ Sp/(r,Jrl)
t2
e et + p—)f;v,’, (98)
00
| 4 muls, 8 adds |

B.3.2. Correction scheme

Intermediate variables, a¥,., ¢, S/, ST, S
and sg,*r?", need not to be stored for every p’ and r’
simultaneously.

% ~N'+1 _ N’ N'—1
ay, =Cyyp 2Cyp +Cyp T,
ko N’
Chp =ay, +12¢cy,
Lk ~k _ ck 3k ~F _ ok
Spr = Cly—1r — Cirs Syv = Cpr—1) — Cpr

Ik _ oLk 1 1x
Sprt = Syr—1) T 1085 + S5 1y 1)

3 _ 3 3 3
iF =%+ 108% + 8%, 40
N'+1 N'+1 1 ok
Cpr =< Cyr ~1m Xlay-1xr-
+a& ey T A pene-y T A g eyl
+10[ &y gy + &1y T By
2
Ko
+a* .|+ 100a* .t + | — ———
a(p+1)r] pr} Poo 144AX2
At?
X sk — e T
Poo 144AX P
At?
_L X gkk
poo 144A 72 P
2
_ A_t& X SS**
Poo 144A22 p'(r'+1)
N'+1 N'+1 Atz N’
Cyr' ~ < Chyl —_ fp’r, (99)
Poo

10 muls, 23 adds|
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B.3.3. Required floating point operations

The required number of floating point operations
for the conventional scheme (prediction scheme) is 4
muls and 8 adds. On the other hand, the required
number of floating point operations for the modified
scheme (prediction and correction scheme) is 14
muls and 31 adds in total. (We assume the source is
very localized and ignore the addition operations for
source term. If this assumption is not valid, 1 and 2
more addition operations are required for conven-
tional and modified scheme respectively. However,
the required FLOPS are not essentially changed.)
Thus, modified scheme required 3.5 times muls and
3.9 times adds. Numerical experiments which are not
shown in this paper show the required CPU time
using modified scheme is about 2.9 times as much as
the CPU time using the conventional scheme (The
reason of difference of the ratios between FLOPS
and actual CPU time has not been specified.) About
36 times improvement in accuracy can be obtained at
the cost of 2.9 times CPU time, so the required CPU
time of modified scheme is about 1/74 to achieve
the same accuracy compared to conventional scheme.

K®' = (___L__)
1728Az Az

Appendix C. Explicit formsfor heterogeneous 2-D
P-SV problems

First, we show the explicit form of submatrices of
modified operators appearing for P-SV case only
(Eg. (54) for homogeneous case) for the heteroge-
neous medium using the stencils. We show the
boundary elements also. Next, we show the total
conventional and modified operators, and numerical
scheme using these operators. We restrict non-
boundary elements to show the required number of
floating point operations clearly. Finally, we com-
pare the number of floating point operators between
our modified scheme and conventional scheme.

C.1. Submatrices of the modified operators

C.1.1. Non-boundary elements

First, we show the non-boundary elements of
submatrices of modified operators. The explicit ele-
ments of K¢, for p#1, No—1, N, and o # 1,
N,—1, N, are as follows:

z+ 2Az 5/\(1,1_1),: 3/\’,171 —QA(I,:+1),.' A(p/+2)7.:
2+ Az | —45A iy =27y 81A(pr41)r =9 12)p
t + At V4 ISA(pI_])TI QAPI,J _27/\(pl+1).’.l 3A(p'+2)r'
z— Az 25 (/1) 15,1, —45/\(1,:+1),.: 5/\(],:_,_2),:
r— Ax z T+ Azx T + 2Azx
z+2Az 50/\(’,1_1),,1 30,y —90/\(’,:,“),: 10’\(p‘+2)r’
2+ Az | —4500 gy 2700y 810Xy —90A( gy (100)
X t z 150’\(13’-—1)1" 90Xy —270/\(Pr+1)r: 30’\(p‘+2)r'
z— Az 250&_1),.1 150, _450’\(p’+1)r’ 50’\(p’+2)r’
z— Az z T+ Az T+ 2Ax
z+ 24z 5A(p'—1)r R W =9 1) Apt+2)r!
2+ Az —45/\(,,!_1),,: —27),,1.,‘1 81/\(pr+1),.r _9’\(p’+2)r’
t— At z 15/\(‘,1_1),.1 i) W —27/\(pr+1),./ 3A(p’+2)1"
L z— Az 25A(p1_1)rl 15/\p'r' ‘45’\(p’+1)r' 5’\(p'+2)r'
z— Azx z T+ Az T+ 2Ax
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C.1.2. Boundary elements

Because the explicit elements of K® is a little
complex especially for boundary elements, we first
express K®” in a general form and define boundary
elements as a special case. K can be expressed as

follows

5 —
K;zwpm-_ngAmwiﬁ(iiaﬁw+DN

10
12

1
+ ESN’N + _8(N’1)N)'

where
5
-5
. 1
T 12AX
-7
-5
HP= !

9
-3

-5

(102)

(103)

H*and H? are N, X N, and N, X N, matrices, respectively. Summation rule for repeated indicesis not applied

in r.h.s. of Eq. (101).

Every boundary elements are defined by Egs. (101)—(103), so we just show one example. The explicit
elementsfor p'=1and r'# 1, N,— 1, N, case is as follows:

o1
1728AxAz

z+2Az *5/\,,!," —SA(pv_‘_l),.r ’\(p'+2)r’
z+ Az 45/\;,!,.' 72/\(pl+1),l —9/\(pl+2).,.l
t+ At z —15Apl,.l —24/\(',1+1),.; 3A(p1+2),.:
z— Az | =250y —40X (41 5A(p12)r
z z+ Az T+ 2Az
z+2Az | =507, —80/\(;,/_,,1),.: 10/\(p:+2)r:
z+ Az 450y 720/\(pr+1),.l "'90’\(p'+2)'r'
X t z —150Apr =240 4 1) 30X (pr 42y
z— Az | =250y, —400)\(,,:+1),r 50/\(P:+2),.1
T T+ Az z+ 24z
z+2Az —5/\;,',1 —8)\(1,1+1)r1 ’\(p’+2)r’
z+ Az 45)\,,!,-1 72’\(p'+1)r’ _9’\(p’+2)r’
t— At z =15y =24y 41y 3A 2y
z—=Az | =25)y —40/\(1,:+l),.: 5/\(,,1_,_2),'
z z+ Az T+ 2Ax

(104)
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C.2. Modified / conventional operators (non-

boundary elements)

0y 0 O
pp9rr
Apinrypriy = TWPOO[S(N'+1)N = 28yy
+5(N’—1)N]
Kp’r’N’lper
O o On'
ppON'N
= A 72 [MO—(S(r’—l)r_ar’r)
+I~’vo+(_5r’r + 5(r’+1)r)]
6r’résN’N
A X2 [(/\ + 2:“«)—0(5( p-1p ap/p)
+(A+ 2“)+0(_5p’p + 5(p’+l)p)]
Kp’r’N’3prN3

8r’rSN’N
NZ [“—0(8(p’—1>p_8p’p)

+M+o(_5p’p +§ p’+l)p)]

Byp Oy
Az?

+(/\ + ZM)0+ (_8r’r + 8(r’+ l)r)]

[(A + 2”’)07 (S(r'—l)r - ar’r)

< s Nwawa
p'r'N'1prN3 — A XA Z - 2 (P=1p
Ay /
(p'+D)r
% p’+1)p}

X

1 1
- Eé(r’—l)r + E‘S(rur r

S Mp(r'—1) s
AxAz| 2 b

Mpr+1)
+ 2 6(r’+ Dr

1

1
~-=5 =5

X 50%-npt S (p'+1>p}

K _ On'n M(pul)r’b‘
p'r'N’3prN1 — A XA 7 - 2 (pP'—1)p
MHp+r

+ 2 6(ID'+1)P}
1 1
X = Es(r’—l)r + Es(r’Jrl)r
3N'N . )‘p’(r'—l) s
AXAz 2 (r'=Dr
Ayopr
p'(r'+1)
+ 2 8(r/+1)r}
1 1
X1 = Ea(p’—l)p + ES(D’H)p
(105)
Aerny privy
67/7
= PPOO[(S(N’Jrl)N —28yn Tt 5(N’—1)N]
1 10
X E"S(p’—l)p+ Eap’p + Ea(p”rl)p
1
X Ea(r’fl)r + Esr'r + Eé(rurl)r
K;)’r'N’lper

1
= E[ M’O—(S(r’—l)r - 6r’r)

+/~L0+(_ & + 6(r’+l)r)]

1 10

+—5

X Ea(p'—l)p 12 p’p+55(p’+l)p}

10
X Ea(N’—l)N + ESN’N + ES(N’+1)N}
1
+ A X2 [()‘ + 2I‘L)*O(S(p’fl)p - 6p’p)

+(A+2u) 0(— Opp + O+ l)p)]

X

10
E’S(r’fl)r + Ear’r + Es(r'+1)r

1 10 1
X ES(N’—l)N + E‘SN’N + Ea(N’+l)N
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K;)'r’N’3prN3
1
T A2 [ 1—o(Bp-1)p = Byp)

+,U«+o(_5p’p + 6 p’+1)p)]

1 10
X Eé(r,,l), + Eﬁrrr + Ea(r’+l)r
1 10 1
X ES(N’fl)N + ESN/N + Ea(N’+l)N

1
+ E [(/\ + 2:“*)07 (a(r’fl)r - 6r’r)

+(/\ + 2/'L)O+ (_8r’r + 8(r’+ l)r)]

1 10 1
X Ea(p/—l)p"'Eap’p—"ﬁ&(p’ﬂ)p
1 10
X ES(N’—1)N+ESN'N+E5(N’+1)N
K;)’r’N’lprNS
_ e
AXAz 12 (F=bp
3)\p,r, 9)\( Y
o 12 pp T 12 (P+1p
A(p’+2)r’6
o 12 (P'+2)p
5 3
X _Es(r’—l)r_ﬁsr’r

9 1
+ Ea(r’+l)r - Es(rurz)r

1 10 1
X ES(N'—l)N + E‘SN’N + EB(N’Jrl)N
1 Hpa-2)
+ X S,
AXAz 12 oar
Wy S 1
12
3:u‘p’r' 5Mp’(r'+l)
+ 12 6rr + 12 6(r’+1)r
1
X |12 0%w-20~ 3% -0

5
+ E’sp’p + Eﬁ(p’ﬂ)p}

10
X | — 8, + —086yn+ — 6\
12 OV =DN T 5 ONN T 5 O +1)N]
K;)’r’N’Sper
B 1 B Sk p—1yr
AXAz 12 (F=bp
Sty M p+
T 12 pp T 12 (p'+1)p
P«(p'+2)r’6
- 12 (P+2)p

9 1
+ Ea(r’+l)r - E‘S(r’JrZ)r

1 10 1
X E‘S(N’—l)N + ESN’N + ES(N’Jrl)N

1 Ayr—
x[ Pr=2) o

+ ,
AxAz 12 oA
N1 3y

T dweurt T o

T 5)‘p’(r’ﬁ—l) ,

12 (r'+Dr
1

X1 320w -20p = 5% -1p
3 5

+ Esp/p + Ea(p”rl)p

1 10 1
X ES(N’—l)N + ESN/N + ES(N’+1)N

(106)

C.3. Scheme using the modified operators

C.3.1. Prediction scheme
The values within large braces ‘()" are computed
only once and stored, and thus do not require evalua-
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tion at each time step. Intermediate variables, sy/;,

Shiis Sohs Sovs to, 0, t3 and t3, need not to
be stored for every p’ and r’ simultaneoudly. If the
p-loop is inside the r'-loop, sy, is stored only for
the current ' and s, is stored only for r' -2,
r'—1, r" and r' + 1, for example.

11 _ _ 13 _ —
Sy =Cpy_1r1— Cpr1r Sy = Cpr—11 — Cpra

31 _ 33 _
Sor = Cp-1r3— Cprar Spr = Cpr—13 ~ Cpra
u _
tyr =Cp+nr — Cp—nri
3 _
tr = Cpars1n — Cpar—11

31 _
o = Cly+nrs = Cp—1ras

33 _
t = Coirr 13 — Cpar— 13

N'+1 _ N’ N'—1
Cyr =2Cyr1 — Cpn
At? (A +2p)
+ _(A—l:)o Xsé/lr/
Poo X
2
At® (A+2p) 40 1
—|——— | %<,
pos AXZ o+ by
At? py
+|— | XS5
Pu AZ
2
At I‘LO+ 13
—|——=| xS,
Poo A 72 p'(r'+1)
2
(A8 Agoae Xt .
P AAxAZ | PED
2
N T I
P AAXxAZ | PED
2
B At® pyrogy ey
Poo AAXAZ pr=D
2
o AU Eraen |
Poo AAXAZ pr=D
N'+1 N'+1 Atz fN' 107
Cp’r’l (_Cp/rrl + E p’r’l ( )

At? u
N'+1 N’ N'—1 -0 31
Cpyin =2Ca—Chin + | — X S5
p'r'3 p'r'3 p'r'3 Poo sz p'r
2
At I‘L+0 31
- — X S
Poo A X2 S(p+1)r
2
n At (/\+2/.L)0, v 3,3,
Poo Az o
2
At (A+2p)o+ 23
2
(AT Hone Xt
Poo AAXAZ (F=Dr
2
At pyigye 13
| — o | Xty
P 4AXAz
2
B At? Ayr—ny g
Poo AAXAZ LA
2
At Ayioriay "
+|— ti’(r’+1)
Poo 4AXAZ
t2
N+ 1 N+ 1 N’
Cp’r’l (_Cp’r’l + p_ fp/rrl (108)
00
16 muls and 28 adds
C.3.2. Correction scheme
sk _ ~N'+1 N’ N'—1
Ay = Cpyr1 — 2Cy1 T Cpp s
k _ ~N'+1 N’ N'—1
Ayr3=Cprs —2Cy3+Chpg
k — ok N k — % N
Cyr1 = &y T 12C50,  Chpg=ayprs+12CH 5
11 __ A% £3 13% __ A% k
Spr = Clp—nr1 — Cyr1r Spr = Cyar—11 — Cpra

33% __

3l __ k _ %
S = Cpr(r,71)3 Cp’r’3

o'r’ T Czkp’—l)r’B - C?;’r’3v Sp’r’
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C.3.3. Required floating point operations

The required number of floating point operations
for the conventional scheme (prediction scheme) is
16 muls and 28 adds. On the other hand, the required
number of floating point operations for the modified
scheme (prediction and correction scheme) is 56
muls and 90 adds in total. (We assume the source is
very localized and ignore the addition operations for
source term. If this assumption is not valid, 2 and 4
more addition operations are required for conven-
tional and modified scheme respectively. However,
the required FLOPS are not essentially changed.)
Thus, modified scheme required 3.5 times muls and
3.2 times adds. Numerical experiments show the
required CPU time using modified scheme is about
3.5 times as much as the CPU time using the conven-
tional scheme. About 30 times improvement in accu-
racy can be obtained at the cost of 3.5 times CPU
time, so the required CPU time for the modified
scheme is about 1/47 of that required by the con-
ventional scheme to achieve any given accuracy.

Appendix D. Heter ogeneous 3-D problem

Our method can be extended to a general 3-D
heterogeneous medium. Here, we show a part of the
modified operators. The others can be defined in a
similar fashion. We have not yet used these operators
in actual computations, but there should be no spe-
cial difficulty.
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D.1. Required floating point operations

We have not counted the number of floating point
operations required for the 3-D heterogeneous prob-
lem, but we can make a rough estimate. For 1-D
problems, our modified scheme required about 2
times as many floating point operations (or CPU
time) as the conventional scheme (Geller and
Takeuchi, 1998). For 2-D problems, we showed
above that the required floating point operations (or
CPU time) is about 3.5 times that of the conventional
scheme. Because the ratio of required floating point
operations will linearly increase as the dimension of
the problem increases, the required CPU time will be
about 5-8 times for the 3-D problem. On the other

hand, the improvement in the accuracy will be inde-
pendent of the dimension of the problems, and about
30 times improvement can be expected for 3-D
problems. The solution error is proportional to the
square of the grid spacing, and the required CPU
time for 3-D problem is proportional to the fourth
power of the number of grid intervals. This means
that the required CPU time using the modified scheme
is between (30*2/5) and (30%2/8), or roughly
1,100 of that required by the conventional operators
to achieve the same order accuracy for 3-D prob-
lems.
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