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Abstract

Ž .We previously presented an optimally accurate time-domain finite difference method FDM scheme for computing
Ž . wsynthetic seismograms for one-dimensional 1-D problems Geller, R.J., Takeuchi, N., 1998. Optimally accurate second-order

xtime domain finite difference scheme for the elastic equation of motion: 1-D case. Geophys. J. Int. 135, 48–62 . This scheme
was derived on the basis of a general criterion for optimally accurate numerical operators obtained by Geller and Takeuchi
wGeller, R.J., Takeuchi, N., 1995. A new method for computing highly accurate DSM synthetic seismograms. Geophys. J.

xInt. 123, 449–470 . In this paper, we derive optimally accurate time-domain FDM operators for 2-D and 3-D problems
following the same basic approach. A numerical example shows that synthetics for a 2-D P-SV problem computed using the
modified scheme are 30 times more accurate than synthetics computed using a conventional FDM scheme, at a cost of only
3.5 times as much CPU time. This means that the CPU time required to compute synthetics of any specified accuracy using
the modified scheme is only 1r47 that required to achieve the same accuracy using the conventional scheme; the memory
required by the modified scheme is 1r18 that of the conventional scheme. We have not conducted computational
experiments for the 3-D case, but we estimate that the CPU time advantage of the modified scheme will be a factor of over

Ž .100. The stability condition maximum time step for a given spatial grid interval for the various modified schemes is
roughly equal to that for the corresponding conventional scheme. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Synthetic seismograms; Finite difference method; Numerical accuracy

) Corresponding author. Present address: Earthquake Research
Institute, Tokyo University, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-
0032, Japan. Fax: q81-3-3812-9417; e-mail:
takeuchi@eri.u-tokyo.ac.jp

1. Introduction

Waveform inversion is a promising approach to
Ž .inversion for three-dimensional 3-D Earth struc-

ture, but requires the ability to make accurate and
efficient calculation of synthetic seismograms.
Whether synthetics should be computed in the fre-
quency domain or the time domain depends on the
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nature of each problem and dataset. It is therefore
desirable to develop accurate and efficient computa-
tional methods for both the time domain and the
frequency domain.

We previously derived optimally accurate 1 oper-
Ž .ators modified operators for computation of syn-

Žthetics in the frequency domain Cummins et al.,
1994, 1997; Geller and Takeuchi, 1995; Takeuchi et

. Žal., 1996 using the Direct Solution Method DSM;
.Geller and Ohminato, 1994 . These modified opera-

tors were derived on the basis of a general criterion
that must be approximately satisfied by optimally

Žaccurate modified operators Eq. 2.20 of Geller and
.Takeuchi, 1995 . This criterion can also be applied

to derive optimally accurate modified operators for
Ž .finite difference method FDM computations in the

time domain. We previously derived modified time
Ždomain FDM operators for a 1-D problem Geller

.and Takeuchi, 1998 . In this paper, we use the same
approach to derive modified time-domain FDM op-

Žerators for 2-D and 3-D problems. Note that the
derivations in the present paper are not intended to
be self-contained; see Geller and Takeuchi, 1995,

.1998, for basic results. Using these accurate and
efficient synthetics together with algorithms for

Žwaveform inversion Tarantola, 1984; Geller and
.Hara, 1993; Takeuchi et al., 2000 can contribute to

improving our understanding of Earth structure.
ŽMany works we do not cite particular examples

.here have attempted to derive more accurate FDM
operators by redefining the operators for spatial dif-
ferentiation to minimize numerical dispersion of the
P- and S-velocities. Such efforts have not in general
met with notable success. However, the Lax–

Ž . Ž .Wendroff LW scheme Lax and Wendroff, 1964 is
one proposed scheme that has been viewed as
promising by some workers. The details of the LW
scheme and its relation to our approach are discussed
below in Section 5 and elsewhere in this volume by

Ž .Mizutani et al. 2000 . It is shown that the LW
scheme is similar to the scheme presented in this

Ž .paper and by Geller and Takeuchi 1998 , but that
our approach appears advantageous, due to greater

1 ‘‘Optimally accurate’’ operators yield the greatest attainable
Žaccuracy for a particular type of scheme e.g., second order finite

.difference for some particular grid spacing.

ease of application. Also, to our knowledge, it has
never been rigorously established that the fourth
order operators required by the LW scheme actually
exist for general heterogeneous media in 2-D or 3-D.

Previous workers have generally evaluated pro-
posed computational schemes by presenting theoreti-
cal derivations or conducting numerical tests for the
case of a homogeneous medium, using the numerical
dispersion of the phase velocity as the criterion for
evaluating accuracy. However, seismologists use
computational methods to study wave propagation in
heterogeneous models that approximate the actual
Earth, which is highly heterogeneous. It is therefore
essential to evaluate the accuracy and performance
of computational schemes for the case of heteroge-
neous models.

In contrast to previous studies, the derivations in
this paper are based on the general results derived by

Ž .Geller and Takeuchi 1995; 1998 for minimizing the
error of schemes for computing synthetic seismo-
grams. We thus can systematically derive optimally

Žaccurate operators for a given order of operator and
.grid spacing for heterogeneous media in 2-D or 3-D.

The modified FDM operators derived in this paper
optimally minimize the numerical dispersion of the
P- and S-velocities as an indirect consequence of
their minimizing the error of the synthetic seismo-

Ž .grams see Geller and Takeuchi, 1995, 1998 . How-
ever, for technical reasons, it would have been ex-
tremely difficult to derive the operators presented in
this paper directly on the basis of minimizing numer-
ical dispersion of P- and S-wave velocities.

2. Modified operators for homogeneous 2-D SH
problem

In this section, we derive modified FDM opera-
tors for the 2-D SH problem in a homogeneous
medium. This is the simplest 2-D case, but other
applications are basically similar. The extension to
the inhomogeneous case is similar to that for the

Žfrequency domain problem Geller and Takeuchi,
. Ž1995 or for the 1-D time domain problem Geller

.and Takeuchi, 1998 . The derivation of optimally
accurate operators for the homogeneous 2-D P-SV

Ž .problem Section 3 is also straightforward. Modified
operators for the heterogeneous 2-D P-SV and SH
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problems and for a general 3-D heterogeneous
medium are presented in Appendix A.

2.1. ConÕentional operators

Ž .We consider 2-D Cartesian coordinates x, z .
The strong form of the time domain equation of

Žmotion see Geller and Ohminato, 1994 for a discus-
.sion of the strong and weak forms for the 2-D

homogeneous SH problem is as follows:

E2 u E2 u E2 u
r ym ym s f , 1Ž .2 2 2Et Ex Ez
where t is the time, u is the displacement, r is the
density, m is the rigidity, and f is the external force.
The discretized equation of motion can be expressed
as follows:

A X X X yK Ž1.
X X X yK Ž3.

X X X c s f X X X ,Ž .p r N prN p r N prN p r N prN prN p r N

2Ž .
where c and f X X X are the discretized displace-prN p r N

ment and discretized external force, and A X X X ,p r N prN

K X X X
Ž1. and K X X X

Ž3. are respectively the dis-p r N prN p r N prN

cretized operators for temporal differentiation
Ž Ž 2 2 ..r E rEt , the second derivative in the x-direction
Ž Ž 2 2 ..m E rEx and the second derivative in the z-di-

Ž Ž 2 2 ..rection m E rEz . Throughout this paper, the in-

dices p, q, r and pX, qX, rX denote the x-, y- and
Ž Xz-grids, respectively q and q are used only for 3-D

. Xproblems , and the indices N and N denote the
Žtemporal grids. Summation over repeated indices p,

.r, N in this case is implied. For simplicity, we
consider homogeneous grid spacing. The displace-
ment and the external force are discretized as fol-
lows:

c su pD x ,rD z , ND t ,Ž .prN

f X X X s f pX
D x ,rX

D z , N X
D t , 3Ž . Ž .p r N

where D x, D z and D t are the spatial and temporal
grid intervals.

Here, we consider second order FDM operators in
Žtime and space. Unlike some previous workers e.g.,

.Alterman and Karal, 1968 , we define boundary
elements without using pseudo nodes. We present
operators for a scheme in which displacement is the
only variable, rather than a staggered grid scheme
Ž .e.g., Virieux, 1986 where velocity and stress are
independent variables. A free surface is a natural

Ž .boundary condition see Geller and Ohminato, 1994 ,
and is therefore automatically satisfied by the weak-
form FDM solution without its having to be imposed
explicitly.

The elements of the conventional operators are as
follows:

Ž .4
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Ž .5

Ž .6

The above operators are expressed using the following difference stencil:

Ž .7
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Ž .As shown by Geller and Takeuchi 1995 , there
Žare two types of operator error basic error and

.boundary error , but only the basic error has an
Žimportant effect on the solution error the error of

.the synthetic seismograms . We therefore discuss
only non-boundary elements and the basic error, and
omit discussion of the difference stencils for bound-
ary elements and the boundary error. The complete
definitions of the operators, including boundary ele-
ments, are given in Appendix B. The conventional

Ž Ž . Ž ..operators Eqs. 4 – 6 have the following basic
Žerror Throughout this paper errors are stated only to

.lowest order. :

d A X X X ydK Ž1.
X X X ydK Ž3.

X X X cŽ .p r N prN p r N prN p r N prN p qN

D t 2 E2 E2 u D x 2 E2 E2 u
s r y m2 2 2 2ž / ž /12 12Et Et Ex Ex

D z 2 E2 E2 u
y m . 8Ž .2 2ž /12 Ez Ez

The criterion for optimally accurate operators is that
their basic error should be zero when the operand, u,
is an eigensolution. However, as the basic error in

Ž .Eq. 8 does not vanish when the operand is an
eigensolution, the conventional operators do not sat-

Žisfy the general criterion for optimal accuracy see
.Geller and Takeuchi, 1995, 1998 for details .

2.2. Stability condition for unmodified operators

The standard method for estimating the stability
Ž .condition maximum time step is to substitute a

plane wave solution into the discretized equation of
motion and derive the condition on D t in order for
the numerical solution not to have an eigenfrequency

Žwith a negative imaginary part e.g., Richtmyer and
.Morton, 1967; Alterman and Loewenthal, 1970 . This

method is rigorous only for an infinite homogeneous
medium. The stability conditions for a heterogeneous
bounded medium can be rigorously obtained numeri-

Ž .cally Geller and Takeuchi, 1998 by solving a gen-
Žeralized eigenvalue problem Golub and Van Loan,

.1989 . In general, such numerical estimates show
that the stability limit for a heterogeneous bounded
medium is roughly equal to the minimum value of

Žthe stability limit as estimated using the standard
.methods for a homogeneous unbounded medium .

We now derive the stability condition for the
conventional operators for the homogeneous 2-D SH

Ž .problem. We assume exp iv ND t time dependence
for the eigensolutions:

c sc exp iv ND t , 9Ž . Ž .prN pr

'where v is angular frequency, is y1 , and c ispr

the displacement in the frequency domain at xspD x
Ž .and zsrD z 0FpFN , 0FrFN . For simplic-x z

ity, we consider the case for which D xsD z. The
Ž .Fourier transform of Eq. 2 is as follows:

2
Ž1. Ž3.H qH cs 1ycosvD t Tc . 10Ž . Ž . Ž .2

D t

For the 1-D case, it is easy to write the explicit form
Ž .of the matrices in the counterpart of Eq. 10 ; see

Ž . Ž . Ž .Eqs. 30 and 31 of Geller and Takeuchi 1998 .
However, for the 2-D or 3-D cases, it is necessary to
map the subscripts for the x- and z-grids into a
single index in order to write the matrices in Eq.
Ž .10 ; this mapping should be chosen to minimize the

Ž . Žbandwidth of the matrices in Eq. 10 see Appendix
.A4 of Geller and Ohminato, 1994 for details . The

Ž .elements of the matrices in Eq. 10 for a typical
Ž . Ž .interior grid point are shown below in Eqs. 11 – 13 ;

note, however, that these elements are not contigu-
ous in the actual mapped matrices. Also, we do not
show explicitly the elements for grid points on exte-
rior boundaries or corners.

Ž .11

Ž .12

Ž .13
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On the other hand, we can define the following
generalized eigenvalue problem:

HŽ1.qHŽ3. cslTc , 14Ž . Ž .

where l is the eigenvalue. The elements of the
Ž . Ž .l,n th eigenvector of Eq. 14 for the matrices for a

Ž Ž . Ž ..homogeneous medium Eqs. 11 – 13 are

plp rnp
Ž ln . Ž ln .c s c s cos cos , 15Ž .Ž .pr ž /ž /N Nx z

and the corresponding eigenvalues are given by:

2V 2 2yclycnŽ .s
l s 16Ž .ln 2

D z

where

lp np
clscos , cnscos . 17Ž .

N Nx z

The maximum eigenvalue, l , of this eigenvaluemax
2 2 Žproblem is l s8V rD z V is the S-wave ve-max s s

. Ž .'locity; V s mrr when clscnsy1 in Eq. 16 .s

Following the same approach as for the 1-D problem
Ž .Geller and Takeuchi, 1998 , we derive the following
stability condition for the 2-D SH conventional oper-
ators:

D z
D tF . 18Ž .'2 Vs

This is the well-known Courant stability condition
for this problem. Omitting the derivation, the stabil-
ity limit for the case when D x/D z is

D xD z
D tF . 19Ž .

2 2'V D x qD zs

2.3. Standard modified operators

ŽIn contrast to the 1-D problem Geller and
.Takeuchi, 1998 , there are several possible formula-

tions of the modified operators for the 2-D problem.

In this section, we derive the explicit elements of the
simplest possible form of the modified operators,
which we call the standard modified operators. We
also derive the stability condition for the standard
modified operators.

Modified operators AX, K Ž1.X and K Ž3.X satisfying
Žthe general criterion for optimal accuracy Geller and

. Ž .Takeuchi, 1995 should, rather than Eq. 8 , instead
have the following basic error:

d A X X X
X ydK Ž1.X

X X X ydK Ž3.X
X X X cŽ .p r N prN p r N prN p r N prN prN

D t 2 E2
D x 2 E2

D z 2 E2

s q q2 2 2ž /12 12 12Et Ex Ez

=

2 2 2E u E u E u
r ym ym . 20Ž .2 2 2Et Ex Ez

Ž .The r.h.s. of Eq. 20 will vanish when the operand
is an eigensolution, as the bracketed term is the
homogeneous equation of motion. Operators having

Ž .the basic error given by Eq. 20 thus satisfy the
general criterion for optimal accuracy.

We now derive modified operators that have the
Ž .basic error specified by Eq. 20 . Consider the time

derivative operator A. The basic error for the con-
Ž Ž ..ventional time derivative operator A Eq. 4 has the

Ž Ž ..desired basic error specified by Eq. 20 propor-
tional to D t 2:

D t 2 E2 E2 u
X X Xd A c s r 21Ž .p r N prN prN 2 2ž /12 Et Et

Ž Ž .. 2see Eq. 8 , but it has no error proportional to D x
or D z 2. In contrast, the modified operator AX should
have the following basic error which is dependent on
D x 2 and D z 2 as well as D t 2:

d A X X X
X cp r N prN prN

D t 2 E2
D x 2 E2

D z 2 E2 E2 u
s q q r2 2 2 2ž /12 12 12Et Ex Ez Et

22Ž .
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Ž Ž ..see Eq. 20 . Note that this desired basic error for
the modified operator is obtained by having all of the

Ž .derivatives in the parentheses in Eq. 20 operate on
the first term in the square brackets. In other words,

we smear out the conventional operator A in the x-
and z-directions to obtain the modified operator AX,
as shown below. The explicit form of the modified
operator AX is as follows:

Ž .23

We derive the modified operators K Ž1.X and K Ž3.X in a
Ž .similar fashion from Eq. 20 , by having all of the

Ž .operators in the parentheses in Eq. 20 operate on

the second and third terms in the square brackets,
respectively.

Ž .24
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Ž .25

Ž . Ž .We refer to the operators in Eqs. 23 – 25 as the
standard modified operators. Other possible defini-
tions are discussed in Section 2.4.

Next, we derive the stability conditions for the
standard modified operators. The Fourier trans-
formed discretized equation of motion for the stan-

dard modified operators is as follows:
5 1 X XŽ1. Ž3.q cosvD t H qH cŽ .ž /6 6

2
Xs 1ycosvD t T c , 26Ž . Ž .2

D t
where the matrix elements for the interior grid points
are as follows:

Ž .27

Ž .28

Ž .29
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On the other hand, we can define the following
eigenvalue problem:

HŽ1.X qHŽ3.X csl
X TXc , 30Ž . Ž .

X Ž .where l is an eigenvalue. The l,n th eigenvector of
Ž . Ž . Ž .Eq. 30 for the matrices Eqs. 27 – 29 is given by
Ž .Eq. 15 , and the corresponding eigenvalue is:

12V 2 1ycl 1ycnsX
l s q , 31Ž .ln 2 ž /5qcl 5qcnD z

Ž .where cl and cn are defined in Eq. 17 . We can see
Ž . Xthat the maximum eigenvalue of Eq. 30 is l smax

12V 2rD x 2 whens

clscnsy1

Ž .in Eq. 31 . From the above relations, we can find
that the stability condition for the above modified

Ž Ž . Ž ..operators Eqs. 23 – 25 is

D x
D tF . 32Ž .'2 Vs

This is the same condition as that for the conven-
Ž .tional operators of Eq. 18 . Omitting the derivation,

the stability limit for the case when D x/D z is

D xD z
D tF , 33Ž .

2 2'V D x qD zs

Ž .which is also the same as Eq. 19 .

2.4. Non-standard modified operators

We consider below which other definitions of the
modified operators are possible and what their stabil-
ity conditions are. For the homogeneous 2-D SH
problem, the definitions of the modified operators for

Ž1. Ž3. Ž Ž . Ž ..K and K are unique Eqs. 24 and 25 , but
there are various possibilities for the modified opera-
tor AX. The modified operator with the smallest num-
ber of non-zero elements is as follows:

Ž .34
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Ž . Ž .Any linear combination of Eqs. 23 and 24 with
Ž .weights summing to one will satisfy Eq. 20 , and all

such operators are possible definitions of the modi-
fied operators for the second time derivative:

AZ saAX q 1ya AY , 35Ž . Ž .

where a is an arbitrary constant.
Next, we derive the stability condition for a

scheme using the non-standard modified operator AZ

Ž1.X Ž3.X Ž Ž . Ž . Ž .together with K and K Eqs. 35 , 24 and 25
.respectively . First, we derive the stability condition

Ž .when as0 in Eq. 35 , i.e., the stability condition
Y Ž Ž .. Ž1.X Ž3.Xfor A Eq. 34 , K and K . For simplicity, we

assume D xsD z. The discretized equation of mo-
tion is:

5 1 X XŽ1. Ž3.q cosvD t H qH cŽ .ž /6 6

2
Ys 1ycosvD t T c , 36Ž . Ž .2

D t

where

Ž .37

Ž1.X Ž3.X Ž . Ž .and H and H are given in Eqs. 28 and 29 .
On the other hand, we can define the eigenvalue

problem

HŽ1.X qHŽ3.X cslTYc 38Ž . Ž .

Ž . Ž .The l,n th eigenvector of Eq. 38 for the matrices
Ž . Ž . Ž . Ž .of Eqs. 28 , 29 and 37 is given by Eq. 15 , and

the corresponding eigenvalue is:

2V 2 1ycl 5qcl q 1ycn 5qcnŽ . Ž . Ž . Ž .sY
l s ,ln 2 4qclqcnD z

39Ž .
Ž .where cl and cn are defined in Eq. 17 . The maxi-

mum eigenvalue is l
Y s16V 2rD z 2. From thesemax s

relations, we can see that the stability condition is

3 D z
D tF . 40Ž .(

8 Vs

As compared to the stability condition for the con-
Ž Ž ..ventional operators Eq. 18 or standard modified

Ž Ž ..operators Eq. 32 , the above condition is stricter
by a factor of 63r2.

Ž .If we change the value of a in Eq. 35 , we can
achieve a laxer stability condition than that for the

Ž .standard modified operators. In general, the l,n th
corresponding eigenvalue for the non-standard modi-

Ž . Ž . Ž .fied operators Eqs. 28 , 29 and 35 is:
2 Ž .Ž . Ž .Ž .12V 1ycl 5qcl q 5qcn 1ycnsZ

l s , 41Ž .ln 2 Ž .Ž . Ž .Ž .a 5qcl 5qcn q6 1y a 4qclqcnD z

Ž .where cl and cn are defined in Eq. 17 . We can
derive the stability limit from the maximum value of

Ž .Eq. 41 for any a . For example, if we set as5 in
Ž .Eq. 35 , the stability condition becomes

D x
D tF , 42Ž .

Vs

Ž .which is larger by a factor of 62 than Eq. 18 .
Ž .Numerical experiments see Section 5 confirm that

Ž . Ž .the stability limits given by Eqs. 40 and 42 are
accurate.

3. Modified operators for homogeneous 2-D P-SV
problem

In this section, we derive the modified operators
for the 2-D homogeneous P-SV problem. The equa-
tion of motion is as follows:

2 2 2 2 2E E E E E
r y lq2m ym yl ymŽ .2 2 2 fuExEz EzExEt Ex Ez xx s , 43Ž .

2 2 2 2 2 u fzE E E E E z
yl ym r ym y lq2mŽ .2 2 2EzEx ExEz Et Ex Ez
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where u , u , f and f are the x- and z-compo-x z x z

nents of the displacement and external force, respec-
tively, and l and m are the Lame constants. The´
discretized equation of motion using the modified
operators is as follows:

A X X X X
X yK X X X X

X c s f X X X X , 44Ž .Ž .p r N g prNg p r N g prNg prNg p r N g

where c and f X X X X are the discretized vectorprNg p r N g

displacement and vector external force, and
A X X X X

X and K X X X X
X are the modified oper-p r N g prNg p r N g prNg

ators for temporal and spatial differential operations,
respectively. The indices gs1 or g

X s1 denote the
x-component, and gs3 or g

X s3 denote the z-com-
ponent. The displacement and the body force are
discretized as follows:

c su pD x ,rD z , ND t ,Ž .prN 1 x

c su pD x ,rD z , ND t , 45Ž . Ž .prN 3 z

f X X X s f pX
D x ,rX

D z , N X
D t ,Ž .p r N 1 x

f X X X s f pX
D x ,rX

D z , N X
D t .Ž .p r N 3 z

Because the modified operators A X X X X
X ,p r N g prNg

K X X X
X and K X X X

X are the second deriva-p r 1g prN 1 p r N 3 prN 3

tive operators in the t-, x- and z-directions, they can
be defined in a similar fashion as for the SH case.

A X X X X
X sd X A X X X

X 46Ž .p r g N prNg g g p r N prN

K X X X
X sK Ž2.X

X X X qK Ž3.X
X X Xp r N 1 prN 1 p r N prN p r N prN

K X X X
X sK Ž1.X

X X X qK Ž4.X
X X X 47Ž .p r N 3 prN 3 p r N prN p r N prN

where d X is a Kronecker delta, A X X X
X ,g g p r N p rN

Ž1.X Ž3.X Ž .X X X X X XK and K are given by Eqs. 23 –p r N prN p r N prN
Ž . Ž2.X Ž4.X

X X X X X X25 , and K and K are obtained byp r N prN p r N prN
Ž . Ž . Ž .replacing m in Eqs. 24 and 25 by lq2m .

Next, we define the modified operators
K X X X

X and K X X X
X , which approximate thep r N 1 prN 3 p r N 3 prN 1

mixed differential operators in the x- and z-direc-
tions. If we define modified operators K X X X

Ž5.X andp r N prN
Ž6.X Ž 2 .X X XK for the operators l E rE xE z andp r N p r N
Ž 2 .m E rExEz , we have:

K X X X
X sK Ž5.X

X X X qK Ž6.X
X X X , 48Ž .p r N 1 prN 3 p r N prN prN p r N

K X X X
X sK Ž5.X

X X X qK Ž6.X
X X Xp r N 3 prN 1 prN p r N p r N prN

Note that the order of the indices pX rXN X and prN
are reversed in some of the above operators. We
begin by deriving K X X X

Ž5.X . As K X X X
Ž6.X can bep r N prN p r N prN

defined by replacing l in K X X X
Ž5.X by m, a de-p r N prN

tailed derivation is unnecessary.
The conventional operator K X X X

Ž5. for the 2-Dp r N prN

homogeneous P-SV problem is given by

Ž .49

The operator error of the above operator is

D x 2 E2
D z 2 E2 E2 uxŽ5.

X X XdK c s q l .p r N prN prN 1 2 2ž /6 6 ExEzEx Ez

50Ž .

Ž .The error in Eq. 50 does not match the operator
error desired for the modified operators, because it
does not include an error proportional to D t 2 and
because the coefficients of the error proportional to
D x 2 and D z 2 are 1r6 rather than 1r12. The opera-
tor error of K X X X

Ž5.X should be as follows in orderp r N prN
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to match the operator error of the other modified
operators to second order:

dK Ž5.X
X X X cp r N prN prN 1

D t 2 E2
D x 2 E2

D z 2 E2 E2 ux
s q q l .2 2 2ž /12 12 12 ExEzEt Ex Ez

51Ž .
Ž .As noted by Geller and Takeuchi 1995 , a modified

first-order derivative operator having the above basic
error must be defined using a four-point stencil
rather than a three-point stencil. The explicit form of
the modified operator is either of the following:

5 3 9
y u xyD x y u x q u xqD xŽ . Ž . Ž .

12 12 12
1 D x 2 d2 du

y u xq2D x s 1q ,Ž . 2ž /12 12 d xd x

52Ž .
1 9 3

u xy2D x y u xyD x q u xŽ . Ž . Ž .
12 12 12

5 D x 2 d2 du
q u xqD x s 1q 53Ž . Ž .2ž /12 12 d xd x

The above two definitions are equivalent; in the
frequency domain DSM formulations, we choose the

definition that does not increase the bandwidth of the
Žtotal matrix operators see Geller and Takeuchi,

.1995 . This is because we solve a global system of
simultaneous linear equations in the frequency do-
main DSM formulation, and it is important to mini-
mize the bandwidth of the matrices to optimize
computational efficiency. In the time-domain FDM,
we do not solve global system of simultaneous linear

Ž X X.equations. We instead multiply the matrices A yK
Ž .by the displacement vector c to take local finite

differences. Thus minimizing the number of non-zero
Ž .elements rather than minimizing the bandwidth is

Ž . Ž .critical. Both Eqs. 52 and 53 have an equal
number of non-zero elements, and both definitions
are equivalent in terms of computational efficiency.

Ž .Here we choose Eq. 52 .
The simplest way to define modified operator

Ž .whose operator error is given by Eq. 51 is
1. define a first order derivative operator in the

Ž .x-direction like Eq. 52 ;
2. define a first order derivative operator in the

Ž .z-direction like Eq. 52 ;
3. define an identity operator whose operator error

Ž 2 .Ž 2 2 .is D t r12 E rEt by smearing out the ele-
ments in the t-direction.

and then combine 1–3. The resulting modified oper-
ator K Ž5.X is as follows:

Ž .54



( )N. Takeuchi, R.J. GellerrPhysics of the Earth and Planetary Interiors 119 2000 99–131 111

The results in this section combined with those in
Section 2 give all of the modified operators needed
for the homogeneous 2-D P-SV problem. The exten-
sion of this derivation to the inhomogeneous case is
straightforward. The explicit form of the operators is
given in Appendix C.

The eigenvalue and stability condition cannot be
derived analytically even for the homogeneous case,
because complex P-SV coupling occurs at the
boundary. But the stability condition can be ex-
pressed as a small perturbation with respect to the

Ž .condition for unbounded or periodic medium which
can be derived analytically. This is very similar to
the stability condition for the inhomogeneous medium
Ž .see Geller and Takeuchi, 1998 . The stability condi-
tion for the homogeneous 2-D P-SV conventional
operators is

D x
D tF qe 55Ž .

2 2V qV( p s

for the case of D xsD z, where V and V are P andp s

S wave velocities and e is a small number which
may be either positive or negative. The stability limit
for the homogeneous 2-D P-SV modified operators
is

'6 D x
D tF qe . 56Ž .

2 2 2 26 V qV q V yV( Ž . Ž .p s p s

But in all cases

'6 D x 6 D x
F(

2 22 2 2 2 7 V qV6 V qV q V yV (( Ž . Ž . p sp s p s

D x
s0.926 .

2 2V qV( p s

57Ž .

For a Poisson solid, for which lsm and thus
V 2 s3V 2, we havep s

D t modified 12Ž .max
s f0.961. 58Ž .(

D t conventional 13Ž .max

Ž . Ž .Eqs. 57 and 58 thus show that the stability limit
for the modified operators is not appreciably less

than that of the conventional operators. Numerical
Ž .tests not presented in this paper confirm the above

results.

4. Predictor–corrector scheme using modified op-
erators

Note that in this section, dA and d K denote the
difference between the modified and conventional
operators rather than the error of the operators A and
K. In this section, we present a computational scheme
using the modified operators. We presented a compu-
tational scheme for the 1-D problem in our previous

Ž .paper Geller and Takeuchi, 1998, Section 4 , but the
scheme presented below is more efficient for 2-D or
3-D problems.

The FDM equation of motion using the modified
operators AX and KX can be written as follows:

AX yKX cs f . 59Ž . Ž .
Ž .In general, solving Eq. 59 directly yields an im-

Ž Xplicit scheme, because the modified operator A y
X.K has multiple non-zero elements for time tqD t

Ž Ž . Ž .see Eqs. 23 – 25 for the homogeneous 2-D SH
Ž . Ž . Ž .problem and Eqs. 23 – 25 and 54 for the homo-

.geneous 2-D P-SV problem .
To avoid the need to use an implicit scheme,

Ž .Geller and Takeuchi 1998 use a predictor–correc-
tor scheme for the 1-D problem. First, they solve the
discretized equation of motion using the conven-
tional operators A and K, and predict the wavefield
at the next time step:

AyK c0 s f . 60Ž . Ž .
As there is only one non-zero element for time
tqD t in each of the equations for the conventional

Ž Ž . Ž .operators see Eqs. 4 – 6 for the homogeneous 2-D
Ž . Ž . Ž .SH problem and Eqs. 4 – 6 and 49 for the homo-

. Ž .geneous 2-D P-SV problem , Eq. 60 can, as is well
known, be solved using an explicit scheme. Next,
they solve the following equation for the correction,
d c:

AyK d csy dAId K c0 , 61Ž . Ž . Ž .
where

dAsAX yA, d KsKX yK. 62Ž .
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Finally, they add the predicted wavefield and the
correction to obtain the final value of the wavefield:

csc0 qd c . 63Ž .
Ž .However, Eq. 61 is not efficient for 2-D or 3-D

problems, because dA and d K do not have a simple
form for these cases. We obtain a more computation-

Ž .ally efficient scheme by substituting Eq. 62 into
Ž .Eq. 61 :

AyK d csy AX yKX c0 q AyK c0 , 64Ž . Ž . Ž . Ž .
Ž . Ž .and then substituting Eq. 60 into Eq. 64 . The

resulting equation is as follows:

AyK d csy AX yKX c0 q f . 65Ž . Ž . Ž .
Ž . Ž .Eq. 65 is more efficient than Eq. 61 because the

forms of AX and KX are simpler than dA and d K.
Almost all of the elements of f will be zero for
most applications.

5. Relation between optimally accurate scheme
and LW scheme

Ž .LW schemes Lax and Wendroff, 1964 are fre-
quently referred to as highly accurate schemes be-
cause of the apparent higher order accuracy of the
temporal and spatial derivative operators. However,
such statements are based on the apparent accuracy
of the numerical operators rather than the accuracy
of the numerical solutions. Furthermore, such state-
ments are based on formal accuracy estimates for a
homogeneous medium, whereas what one really
wants to know is the accuracy of the solutions
obtained using LW schemes for a heterogeneous
medium. We consider this question in this section,
and also discuss the relation between our scheme and
LW schemes. We rely in part here on the conclu-

Ž .sions reached by Mizutani et al. 2000 for the 1-D
case.

Ž .Mizutani et al. 2000 showed that the LW scheme
for the 1-D case satisfies the condition for optimal

Ž .accuracy Geller and Takeuchi, 1995 . However, they
also pointed out that the solution error of what is

Ž 4 4.frequently referred to as the O D t ,D z LW scheme
is actually only second order, and that this scheme is
essentially equivalent to the optimally accurate

Ž .scheme of Geller and Takeuchi 1998 . They con-
cluded that our optimally accurate scheme seems to
be somewhat preferable to the LW scheme because

Ž .of i the greater locality of the stencil, which en-
sures greater efficiency for massive parallel compu-

Ž .tations, and ii the greater ease of formulating and
programming the scheme for a general heteroge-
neous medium, especially for boundary elements.

In this section, we evaluate the operator error and
Ž 4 4.solution error of the O D t ,D z LW scheme for a

general 3-D heterogeneous and anisotropic medium,
and show that the conclusion of Mizutani et al.
Ž .2000 applies in general. There are some variations
among proposed LW schemes. Here, we consider

Ž 4 4.one widely cited so-called O D t ,D z LW scheme
Ž .Dablain, 1986 :

N y1w 4th N N xa sT H c q f 66Ž .
N y1 y1 Nb sT H T Hc 67Ž . Ž .

D t 4
Nq1 N Ny1 2 N Nc s2 c yc qD t a q b , 68Ž .

12
where c N, aN and b N are, respectively, the dis-
cretized wavefields for u , E2 u rEt 2 and E4 u rEt 4 ati i i

the Nth time step, f N is the discretized force term
for f at the Nth time step, T and H are the spatiallyi

dependent parts of the second-order conventional
Žtemporal and spatial derivative operators A and K,

.respectively for a 3-D heterogeneous and anisotropic
medium, and H4th is the spatially dependent part of
the fourth-order spatial derivative operator K 4th for a
3-D medium.

To estimate the operator error we derive the
discretized equation of motion for the LW scheme

Ž . Ž .given by Eqs. 66 – 68 in a form similar to that of
Ž . Ž . Ž . Ž .Eq. 2 or Eq. 44 . Substituting Eqs. 66 and 67

Ž . 2into Eq. 68 and multiplying both sides by TrD t ,
we obtain

c Nq1 y2 c N qc Ny1

T 2ž /D t

D t 2
4th N y1 N NyH c y H T Hc s f . 69Ž . Ž .

12
This can be transformed as follows:

D t 2
4th y1AyK y r KK cs f , 70Ž .ž /12

where ry1 is an operator whose explicit elements
are

1
y1

X X X X X X X Xr s d d d d . 71Ž .Ž . p q r N p qrN p p q q r r N N
rp qr
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Thus, the equivalent discretized equation of motion
is as follows:

AyK LW cs f , 72Ž . Ž .

where

D t 2
LW 4th y1K sK q r KK. 73Ž .

12

Using the Born approximation, we can derive the
relation between the solution error d c and the error
of the operators dA, d K LW as follows:

AŽ0.yK Ž0. d csy dAyd K LW cŽ0. , 74Ž . Ž . Ž .

where AŽ0. and K Ž0. are exact operators, and c Ž0. is
the exact solution. We evaluate the operator error,

Ž .i.e., the r.h.s. of Eq. 74 . First, we evaluate the basic
Ž .error of each term on the r.h.s. of Eq. 74 to second

order:

D t 2 E2 E2 u D t 2
iŽ0. y1 Ž0. Ž0. Ž0.dA c s r s r A A c2 2ž /12 12Et Et

75Ž .

D t 2
D t 2

LW Ž0. y1 Ž0. y1 Ž0. Ž0. Ž0.d K c s r KK c s r K K c
12 12

76Ž .

Ž . Ž .Substituting Eqs. 75 and 76 into the r.h.s. of Eq.
Ž .74 , we evaluate the operator error as follows:

y dAyd K LW c Ž0.Ž .
2

D t
y1 Ž0. Ž0. Ž0.sy r A A c

12
2

D t
y1 Ž0. Ž0. Ž0.q r K K c

12
2

D t
y1 Ž0. Ž0. Ž0. Ž0. Ž0.sy r A A yK K cŽ .

12
2

D t
y1 Ž0. Ž0. Ž0. Ž0.wsy r A K yK A

12
Ž0. Ž0. Ž0. Ž0. Ž0.q A qK A yK cŽ . Ž .
2

D t
y1 Ž0. Ž0. Ž0. Ž0. Ž0.sy r A qK A yK c .Ž . Ž .

12

77Ž .

Ž . Ž0.As the r.h.s. of Eq. 77 is equal to zero when c
is an eigensolution, the LW scheme is an optimally
accurate scheme. However, we show below that the
solution error of this optimally accurate scheme is
second order rather than fourth order. We estimate
the solution error of the LW scheme using the results

Ž .of Geller and Takeuchi 1995; Section 6 . From Eqs.
Ž . Ž .74 and 77 , we obtain the following relation:

AŽ0.yK Ž0. d cŽ .
D t 2

y1 Ž0. Ž0. Ž0. Ž0. Ž0.sy r A qK A yK c .Ž . Ž .
12

78Ž .
Ž .If we express Eq. 78 in the frequency domain using

the normal mode basis normalized so that r is an
identity matrix, we obtain

D t 2
2 2 2 2 2 2v yv dc sy v qv v yv c ,Ž . Ž . Ž .m m m m m12

79Ž .
where v is the eigenfrequency of the mth mode.m

Note that summation over repeated indices is not
Ž .implied in Eq. 79 . When v is close to v , wem

obtain the following relation:
2 2 2dc D t v D tm 2 2s v qv f . 80Ž .Ž .mc 12 6m

Ž .As shown by Geller and Takeuchi 1995 , the
Ž .r.h.s. of Eq. 80 is an estimate of the relative

solution error. Thus, the expected solution error for
the LW scheme is

2 2d c v D t
f 81Ž .Ž .0 6c

for a harmonic source with angular frequency v. On
the other hand, the solution error of synthetic seis-
mograms computed using our optimally accurate op-
erators is as follows:

22 2 2< <d c v D t q k D z
f , 82Ž .Ž .0 12c

< <where k is a representative absolute value of the
Ž . Ž .wavenumber. Comparing Eqs. 81 and 82 , we see

that the solution error for our optimally accurate
scheme and the solution error for the LW scheme are
roughly equal when both use the same grid spacing.
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There are some additional questions regarding the
LW scheme. In the above formulation, we assumed

4th 4th Žthat H and K were exact to third order i.e.,
that the lowest order non-zero error terms were

.fourth order and thus make no contribution to the
second-order error. But, in general, derivations of
so-called higher order operators assume a homoge-
neous medium, and the accuracy of such operators,
especially for boundary elements, is in question for a
general heterogeneous medium with sharp internal
discontinuities. To our knowledge, no rigorous
derivation of higher order operators H4th for general
heterogeneous media has ever been published, and it
is far from clear that they necessarily exist. Resolv-
ing this question is an important topic for future
research. A quantitative comparison of performance
between a rigorously derived LW scheme for such
general heterogeneous media and our optimally ac-
curate scheme is thus a topic for future research.

Some readers may question why the LW scheme
Ž Ž ..has a second order basic error r.h.s. of Eq. 77 , in

view of the fact that it is frequently characterized as
a ‘‘higher order scheme.’’ The explanation is as
follows. This error is caused by the approximation

Ž .used in Eq. 67 , which is the equation to evaluate
E4 u rEt 4 in discretized form. The exact evaluation isi

as follows:

E4 u 1 E2 u E2 fi k , l i
s C qi jk l4 2 2½ 5ž /rEt Et Et, j

1 1
X X X X Xs C C u q fXŽ .½ 5i jk l k j k l k , l k, j½ ž /r r , l , j

2E fi
q ,2 5Et

83Ž .

Ž .where C is the elastic constant. But Eq. 67i jk l

omits the f and E2 f rEt 2 term. Because these termsk i

have a second-order contribution, the net operator
error is second order. Some LW schemes appear not
to use this approximation, and thus their basic error
for homogeneous media has higher order accuracy
Ž .e.g., Igel et al., 1995 . But the extension of this
result to heterogeneous media would require the
assumption that H4th is exactly fourth order, so a

rigorous derivation of such operators, including the
boundary errors, is another important research topic.

In summary, it seems questionable to characterize
the LW scheme as a ‘‘higher order scheme,’’ since

Ž 4 4.the solution error for the so-called O D t ,D z LW
scheme analyzed above is second order optimally
accurate. Furthermore, there seem to be problems in
defining rigorously fourth order H4th operators for
general heterogeneous media with sharp internal dis-
continuities, especially for boundary elements.

6. Numerical examples

We compare the accuracy of synthetic seismo-
grams computed using the conventional and modi-
fied operators for the 2-D heterogeneous P-SV prob-
lem. We consider a heterogeneous medium whose

Ž 3. Ž .density r grcm , P-wave velocity V kmrs , andp

Ž . Ž . Ž .S-wave velocity V kmrs at x km and z kms
are as follows:
r x , z s1q xr1000Ž .

75q3 xr40q5zr40 0F xF1000V x , z sŽ .p ( ž /0F zF10001q xr1000

25q xr40q zr20
Ž .V x , z s . 84Ž .s ( 1q xr1000

A comparison of the error for synthetics com-
puted using the conventional and the modified opera-
tors is shown in Fig. 1. We use a constant grid

Ž .spacing D xsD zs2 km , and the length of the
time series is 250 s. The source is a point single

Ž .force f s f s1 N at xszs500 km with ax z

Ricker wavelet time history whose central frequency
Ž . Ž .is 10 s. The receiver is at x, z s 300, 500 . The

error at the receiver is plotted against the temporal
Žgrid spacing D t normalized by the nominal value of

.the Courant limit for the conventional operators.
The relative error is the ratio of the RMS of the

Ž Ž0..residual u yu and the RMS of the exact solu-i i

tion uŽ0.. Its explicit definition is as follows:i

2Ž0.< <u yu d tH i i

Relative Error % s =100.Ž .
2Ž0.) < <u d tH i

85Ž .
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Fig. 1. A comparison of the error of the synthetic seismograms as
a function of the temporal grid spacing. The temporal grid spacing

Žis normalized by the nominal Courant limit Alterman and
.Loewenthal, 1970 . The diamonds and squares show the error at

the receiver point using the conventional and modified operators,
respectively.

The nominal Courant limit for the conventional oper-
Žators for the inhomogeneous P-SV problem when

. ŽD xsD z is as follows e.g., Alterman and Loewen-
.thal, 1970 :

D x
D t s . 86Ž .courant 2 2V qV(Ž .p s max

However, as noted above and by Geller and Takeuchi
Ž .1998 , the actual Courant limit for the conventional
operators for a heterogeneous medium or for a finite
but homogeneous medium is slightly different from
the above limit, and the stability limit for the modi-
fied operators is slightly lower than that of the
conventional operators. The nominal limit predicted

Ž .by Eq. 86 is D ts0.1206 s, but we found that the
actual limits for this case are D ts0.121 s and
D ts0.118 s for the conventional and modified oper-
ators, respectively.

Ž .We found see Fig. 2 that the accuracy of the
synthetics computed using the modified operators is

Žgreatly improved by about a factor of 30 times as
compared to synthetics computed with the same
spatial and temporal gridding for the conventional

.operators for all values of the temporal grid spacing
used in the numerical experiment. In contrast to Fig.

Ž .2a and c of Geller and Takeuchi 1998 , there is not
great improvement in the accuracy of the synthetics
computed using the conventional operators for val-
ues of D t near the Courant limit. This is an expected
result, for reasons that were explained by Geller and

Ž .Takeuchi 1998 : for the homogeneous 1-D or 2-D

Fig. 2. A comparison of the waveforms and the residuals for P-SV
synthetics in a heterogeneous medium computed using the modi-
fied and conventional operators. These are synthetics for the case
when the temporal grid spacing normalized by the Courant limit is
0.5. The upper two traces show the x- and z-components of the
synthetics, and the next two traces show the x- and z-components

Ž .of the residuals synthetic waveforms minus exact waveforms for
synthetics computed using the modified operators. 30= enlarge-
ments of the residuals are also shown. The next four traces show
the synthetics and residuals for synthetics computed using the
conventional operators. The last two traces show the almost exact

Ž .synthetics synthetics computed by very fine grids . All traces are
plotted using the same vertical scale.
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SH problems, the basic error of the temporal deriva-
tives and the basic error of the spatial derivatives
fortuitously cancel at the Courant limit when the
operand is an eigensolution. Even for heterogeneous
1-D or 2-D SH problems, the errors due to the
temporal and spatial derivatives will approximately
cancel if we choose an appropriately spatially vary-
ing grid spacing. However, for the 2-D P-SV prob-

Ž .lem or general 3-D problem , P and S waves, which
have different wavenumbers, exist simultaneously in
the wavefield. The temporal and spatial errors will
never cancel simultaneously for both types of waves
using the conventional operators. Thus, using the
modified operators is especially advantageous for the
P-SV or 3-D problems.

Synthetics computed using the conventional and
modified operators are shown in Fig. 2. We show
synthetics for the case D trD t s0.5. The re-courant

Žquired CPU times were 3830 and 13 300 s on an
.UltraSPARC, 170 MHz for the conventional and

modified operators, respectively. About 3.5 times
more CPU time was required for the modified opera-
tors, but about 30 times improvement in the accuracy
was obtained. Because the CPU time is proportional
to the cube of the grid spacing, while the error is
proportional to the square of the grid spacing, this
means a 303r2r3.5s47 times decrease in the CPU
time required to obtain synthetics of any given accu-
racy using the modified operators rather than the
conventional operators. We estimate that the advan-
tage of the modified operators will be a factor of

Ž .over 100 for 3-D problems see Appendix D , but we
have not yet confirmed this by numerical tests.

We conducted some simple numerical tests of the
Žstandard and non-standard modified operators see

Ž . Ž . Ž .Eqs. 23 , 34 and 35 , and accompanying discus-
.sions . The goal of these tests was to verify the

Ž Ž . Ž ..general results on stability e.g., Eqs. 41 and 42
rather than to determine the optimum value of a to
maximize computational efficiency. The latter re-
mains a subject for future work. The calculations
described in this paragraph were all carried out for

Ž .D tf0.7D t conventional . Fig. 3a shows the sta-max
Ž .bility limit verified through numerical experiment

for the alternative modified operators for various
Ž Ž . Ž . Ž ..values of a see Eqs. 35 , 39 – 42 . Fig. 3b

shows the variation of the relative accuracy as a
function of a , normalized to the relative accuracy

Ž . Ž Ž ..Fig. 3. a Stability limit for various values of a see Eq. 35 .
Ž . Ž . Ž .b relative error for constant grid size as a function of a . c

Ž .CPU time for constant grid size as a function of a . Each plot is
normalized by the results for the standard modified operators
Ž .a s1 .

for the standard modified operators for the same grid
size. Fig. 3c shows the CPU time, normalized to the
CPU time for a scheme using the standard modified
operators. Here, we consider the 2-D SH problem for
the heterogeneous medium whose density and S

Ž .wave velocity are given in Eq. 84 . We use constant
Ž .grid spacing D xsD zs2 km for all cases.

We can see that the stability limit increases
slightly, while the accuracy degrades slightly, as a

increases. There is no significant difference in CPU
time. The stability limit is essentially equal to the
predicted value. The reason that the accuracy de-
grades for larger a is probably that higher order
errors increase as a increases. There thus seems to
be a trade-off between accuracy and the stability

Ž .limit; the standard modified operators as1 appear
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to be a reasonable choice, but we have not yet
ascertained the optimum value of a .

7. Conclusions and discussion

We derived modified time domain FDM operators
for a general heterogeneous medium and confirmed
that the accuracy of the synthetic seismograms com-
puted using the modified operators was greatly im-
proved as compared to the conventional FDM opera-
tors. We also confirmed that the CPU time required
to achieve any given level of accuracy was greatly
reduced by using the modified operators. In this
paper we considered an isotropic and elastic medium,
but extension to an anisotropic medium should be
straightforward. The extension the anelastic case
Ž .Emmerich and Korn, 1987 is an important future
topic, but appears to be relatively straightforward.

In this paper, we presented operators for a medium
without sharp internal discontinuities. Discontinuous
boundaries coinciding with grid boundaries can be
handled by ‘‘overlapping’’ the operators in a

Žstraightforward fashion see Geller and Takeuchi,
.1995 . However, developing methods for accurate

handling of discontinuities between nodes is an im-
portant topic for future research.

A variety of approaches exist for computing syn-
thetic seismograms. These may effectively be sepa-

Žrated into quasi-analytic methods e.g., reflectivity:
Fuchs and Muller, 1971, modal superposition:¨
Takeuchi and Saito, 1972, the DSM, e.g., Takeuchi

. Žet al., 1996 and purely numerical methods e.g.,
.finite difference, finite element, pseudo-spectral . The

choice between these two classes is depends on the
nature of the problem. For example, the former class
of methods is obviously more appropriate for a
flat-layered medium. However, the distinction be-
tween analytic and numerical methods can become
fuzzy. Consider, for example, a laterally homoge-
neous medium with arbitrary vertical heterogeneity.
For such a medium, we would use separation of
variables to break the problem up into a series of
decoupled problems for each distinct wavenumber or
harmonic, and then solve these decoupled 1-D prob-
lems numerically. On the other hand, for general
arbitrarily heterogeneous media purely numerical
methods will probably be preferable.

Suppose we have decided to use a purely numeri-
cal method, and are trying to decide which is best.
Generally speaking, second-order FDM schemes have

Ž .been considered inferior to fourth order in space
FDM schemes or pseudo-spectral schemes. This view
may be correct if consideration is limited to conven-
tional second-order FDM schemes. However, the
modified second order FDM schemes presented in
this paper have significant advantages over other
types of schemes. Memory access is more localized
than in higher order FDM schemes, and much more
localized than in pseudo-spectral schemes, which
rely on FFT differentiation. This is a major advan-
tage for applications on highly parallel machines.
Also, pseudo-spectral methods have difficulty in
handling sharp boundaries, while FDM schemes do

Ž .not Mizutani et al., 2000 . Finally, it appears that
Ž .nominally fourth order or higher FDM schemes

may actually be of lower order accuracy due to
boundary errors, and that the problem of boundary
errors may preclude the possibility of developing
modified operators for higher order FDM schemes
along the lines used in this paper for the second
order case. We therefore think that the modified
second order FDM operators derived in this paper
may well prove preferable for a broad general class
of problems.
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Appendix A. Notation

For simplicity, we assume constant grid intervals
D x, D y, D z and D t. We also assume the medium
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has no sharp internal discontinuities. We denote the
Ž X X X X .Xdisplacement u p D x, q D y, r D z, N D t and theg

Ž X X X X .Xexternal force f p D x, q D y, r D z, N D t byg
N X N X Ž X X

X X X X X X X Xc and f , respectively g s1, g s2 andp q r g p q r g

g
X s3 denote the x-, y- and z-components, respec-

. X X Xtively , where 0Fp FN , 0Fq FN , and 0Fr Fx y
Ž X X X .N . We denote the density r p D x, q D y, r D z ,z

Ž X X X .and the Lame constants l p D x, q D y, r D z and´
Ž X X X . X X X X X X X X Xm p D x, q D y, r D z as r , l and m ,p q r p q r p q r

respectively. To express matrix elements and schemes
in a compact form, we use the following simplified
notations.

r sr X X X000 p q r

m s m X X X qm X X X r2Ž .y00 Ž p y1.q r p q r

m s m X X X qm X X X r2Ž .q00 p q r Ž p q1.q r

m s m X X X qm X X X r2Ž .00y p q Ž r y1. p q r

m s m X X X qm X X X r2Ž .00q p q r Ž p q1.q Ž r q1.

The other type of notations like m , l , etc. are0y0 y00

defined in a similar fashion. For the 2-D SH and
P-SV problem, we omit qX and its related indices
Ž .e.g., second index of l because we assumey00

homogeneous dependence in the y-direction. For the
2-D SH problem, only g

X s2 appears, so we further

X Žomit the index g . We denote replacement like the
equal sign in a Fortran program, as opposed to

. Ž .mathematical equality by a left arrow § .

Appendix B. Explicit forms for heterogeneous 2-D
SH problems

First, we show the explicit form of submatrices of
Ž Ž . Ž .modified operators Eqs. 23 – 25 for homogeneous

.case for heterogeneous medium using the stencils.
We show the boundary elements also. Next, we
show the total conventional and modified operators,
and numerical scheme using these operators. In these
discussions, we consider only non-boundary ele-
ments to show the required number of floating point
operations clearly. Finally, we compare the number
of floating point operators between our modified
scheme and conventional scheme.

B.1. Submatrices of the modified operators

B.1.1. Non-boundary elements
First, we show the non-boundary elements of

submatrices of modified operators. The explicit ele-
ments of A X X X

X , K X X X
Ž1.X and K X X X

Ž3.X forp r N prN p r N prN p r N prN

rX
/1, N and qX

/1, N are as follows:x z

Ž .87
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Ž .88

Ž .89

B.1.2. Boundary elements
Next, we show the boundary elements, the ex-

plicit elements of A X X X
X , K X X X

Ž1.X andp r N p r N p r N p r N

K X X X
Ž3.X for pX s1, pX sN , rX s1 or rX sN . Thep r N prN x z

explicit elements for pX s1 and rX
/1, N are asz

follows. The other boundary elements can be defined
in a similar fashion.
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Ž .90

Ž .91

Ž .92
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Finally, we show the corner elements. The explicit
elements for pX s1 and rX s1 are as follows.

The other corner elements can be defined in a similar
fashion.

Ž .93

Ž .94

Ž .95

(B.2. Modified r conÕentional operators non-
)boundary terms

d X d Xp p r r
X X X XA s r dp r N prN 00 ŽN q1.N2

D t

X Xy2d qdN N ŽN y1.N

X Xd dr r N N
X X X X XK s m d ydŽ .p r N prN y0 Ž p y1. p p p2

D x
X Xqm yd qdŽ .q0 p p Ž p q1. p

X Xd dp p N N
X Xq m d ydŽ .0y Ž r y1.r r r2

D z
X Xqm yd qdŽ .0q r r Ž r q1.r
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A X X X
X
p r N prN

d X d Xp p r r
X X Xs r d y2d qd00 ŽN q1.N N N ŽN y1.N2

D t

=
1 10 1

X X Xd q d q dp y1 p p p Ž p q1. pŽ .12 12 12

=
1 10 1

X X Xd q d q d 96Ž .Ž .r y1 r r r Ž r q1.r12 12 12
K X X Xp r N prN

X Xd dr r N N
X Xs m d ydŽ .y0 Ž p y1. p p p2

D x
X Xqm yd qdŽ .q0 p p Ž p q1. p

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

=
1 10 1

X X Xd q d q dŽ .r y1 r r r Ž r q1.r12 12 12
X Xd dp p N N

X Xq m d ydŽ .0y Ž r y1.r r r2
D z

X Xqm yd qdŽ .0q r r Ž r q1.r

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

=
1 10 1

X X Xd q d q d 97Ž .Ž .r y1 r r r Ž r q1.r12 12 12

B.3. Scheme using the modified operators

B.3.1. Prediction scheme
Ž.The values within the large braces ‘‘ ’’ in this

and all schemes hereafter are computed only once
and stored, and thus do not require evaluation at each
time step. Intermediate variables, s X X

1 and s X X
3 , needp r p r

not to be stored for every pX and rX simultaneously.
If the pX-loop is inside the rX-loop, s X X

1 is storedp r

only for the current rX and s X X
3 is stored only forp r

rX y1, rX and rX q1. We assume the most of the
force term elements are zero, and ignore their addi-
tion operations for all FLOPS counting hereafter.

s1
X X sc N X

X X yc N X

X Xp r Ž p y1.r p r

s3
X X sc N X

X X yc N X

X Xp r p Ž r y1. p r

D t 2 mX X X y0N q1 N N y1
X X X X X Xc s2c yc qp r p r p r 2ž /r D x00

D t 2 mq01
X X=s yp r 2ž /r D x00

D t 2 m0y1
X X=s qŽ p q1.r 2ž /r D z00

D t 2 m0q3 3
X X X X=s y =sp r p Ž r q1.2ž /r D z00

D t 2
X X XN q1 N q1 N

X X X X X Xc §c q f 98Ž .p r p r p rž /r00

4 muls, 8 adds

B.3.2. Correction scheme
Intermediate variables, a X X

U , c X X
U , s X X

1U , s X X
3U , s X X

1UU
p r p r p r p r p r

and s X X
3UU , need not to be stored for every pX and rX
p r

simultaneously.

a X X
U sc N Xq1

X X y2c N X

X X qc N Xy1
X X ,p r p r p r p r

c X X
U sa X X

U q12c N X

X Xp r p r p r

s1
X X
U sc X X

U yc X X
U , s3

X X
U sc X X

U yc X X
U

p r Ž p y1.r p r p r p Ž r y1. p r

s1
X X
UU ss1

X X
U q10 s1

X X
U qs1

X X
U ,p r p Ž r y1. p r Ž p q1.Ž r q1.

s3
X X
UU ss3

X X
U q10 s3

X X
U qs3

X X
U

p r Ž p y1.r p r Ž p q1.r

1X X UN q1 N q1
X X X X X Xwc §c q y = a�p r p r Ž p y1.Ž r y1.ž /144

X X
U

X X
U

X X
U xqa qa qaŽ p y1.Ž r q1. Ž p q1.Ž r y1. Ž p q1.Ž r q1.

w X X
U

X X
U

X X
Uq10 a qa qaŽ p y1.r p Ž r y1. p Ž r q1.

D t 2 my0U U
X X X Xxqa q100a q4Ž p q1.r p r 2ž /r 144D x00

D t 2 mq01UU 1UU
X X X X=s y =sp r Ž p q1.r2ž /r 144D x00

D t 2 m0y 3UU
X Xq =sp r2ž /r 144D z00

D t 2 m0q UU3
X Xy =sp Ž r q1.2ž /r 144D z00

D t 2
X X XN q1 N q1 N

X X X X X Xc §c q f 99Ž .p r p r p rž /r00

10 muls, 23 adds
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B.3.3. Required floating point operations
The required number of floating point operations

Ž .for the conventional scheme prediction scheme is 4
muls and 8 adds. On the other hand, the required
number of floating point operations for the modified

Ž .scheme prediction and correction scheme is 14
Žmuls and 31 adds in total. We assume the source is

very localized and ignore the addition operations for
source term. If this assumption is not valid, 1 and 2
more addition operations are required for conven-
tional and modified scheme respectively. However,

.the required FLOPS are not essentially changed.
Thus, modified scheme required 3.5 times muls and
3.9 times adds. Numerical experiments which are not
shown in this paper show the required CPU time
using modified scheme is about 2.9 times as much as

Žthe CPU time using the conventional scheme The
reason of difference of the ratios between FLOPS

.and actual CPU time has not been specified. About
36 times improvement in accuracy can be obtained at
the cost of 2.9 times CPU time, so the required CPU
time of modified scheme is about 1r74 to achieve
the same accuracy compared to conventional scheme.

Appendix C. Explicit forms for heterogeneous 2-D
P-SV problems

First, we show the explicit form of submatrices of
modified operators appearing for P-SV case only
Ž Ž . .Eq. 54 for homogeneous case for the heteroge-
neous medium using the stencils. We show the
boundary elements also. Next, we show the total
conventional and modified operators, and numerical
scheme using these operators. We restrict non-
boundary elements to show the required number of
floating point operations clearly. Finally, we com-
pare the number of floating point operators between
our modified scheme and conventional scheme.

C.1. Submatrices of the modified operators

C.1.1. Non-boundary elements
First, we show the non-boundary elements of

submatrices of modified operators. The explicit ele-
ments of K X X

Ž5.X for pX
/1, N y1, N and qX

/1,p r pr x x

N y1, N are as follows:z z

Ž .100
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C.1.2. Boundary elements
Because the explicit elements of K Ž5.X is a little

complex especially for boundary elements, we first
express K Ž5.X in a general form and define boundary
elements as a special case. K Ž5.X can be expressed as
follows

1
XŽ5. a b

X X X X X X XK sH l H dŽ .p r N prN p p pr r r N q1 Nž 12

10 1
X Xq d q d , 101Ž .N N ŽN y1.N /12 12

where

5 8 y1
y5 y3 9 y1

. . . .1 . . . .
a . . . .H s . 102Ž .

12D x y5 y3 9 y1
y5 y3 8

y5 y7

y7 8 y1
y5 y3 9 y1

. . . .1 . . . .
b . . . .H s . 103Ž .

12D z y5 y3 9 y1
y5 y3 8

y5 5

H a and H b are N =N and N =N matrices, respectively. Summation rule for repeated indicesis not appliedx x z z
Ž .in r.h.s. of Eq. 101 .

Ž . Ž .Every boundary elements are defined by Eqs. 101 – 103 , so we just show one example. The explicit
elements for pX s1 and rX

/1, N y1, N case is as follows:z z

1XŽ5.K s ž /1728DxDz

Ž .104
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(C.2. Modified r conÕentional operators non-
)boundary elements

d X d X d Xp p r r g g
X X X X X XA s r d y2dp r N g prNg 00 ŽN q1.N N N2

D t

XqdŽN y1.N

K X X Xp r N 1 prN 1

X Xd dp p N N
X Xs m d ydŽ .0y Ž r y1.r r r2

D z

X Xqm yd qdŽ .0q r r Ž r q1.r

X Xd dr r N N
X Xq lq2m d ydŽ . Ž .y0 Ž p y1. p p p2

D x

X Xq lq2m yd qdŽ . Ž .q0 p p Ž p q1. p

K X X Xp r N 3 prN 3

X Xd dr r N N
X Xs m d ydŽ .y0 Ž p y1. p p p2

D x

X Xqm yd qdŽ .q0 p p Ž p q1. p

X Xd dp p N N
X Xq lq2m d ydŽ . Ž .0y Ž r y1.r r r2

D z

X Xq lq2m yd qdŽ . Ž .0q r r Ž r q1.r

X X Xd lN N p y1 rŽ .
X X X XK s y dp r N 1 prN 3 p y1 pŽ .

D xD z 2

X Xl p q1 rŽ .
Xq d p q1 pŽ .2

=
1 1

X Xy d q dŽ . Ž .r y1 r r q1 r2 2

X X Xd m Ž .N N p r y1
Xq y dŽ .r y1 r

D xD z 2

X Xm Ž .p r q1
Xq dŽ .r q1 r2

=
1 1

X Xy d q dp y1 p p q1 pŽ . Ž .2 2

X X Xd mN N p y1 rŽ .
X X X XK s y dp r N 3 prN 1 p y1 pŽ .

D xD z 2

X Xm p q1 rŽ .
Xq d p q1 pŽ .2

=
1 1

X Xy d q dŽ . Ž .r y1 r r q1 r2 2

X X Xd l Ž .N N p r y1
Xq y dŽ .r y1 r

D xD z 2

X Xl Ž .p r q1
Xq dŽ .r q1 r2

=
1 1

X Xy d q dp y1 p p q1 pŽ . Ž .2 2

105Ž .
A X X X X

X
p r N g prNg

d X
g g

X X Xs r d y2d qd00 ŽN q1.N N N ŽN y1.N2
D t

1 10 1
X X X= d q d q dp y1 p p p Ž p q1. pŽ .12 12 12

=
1 10 1

X X Xd q d q dŽ .r y1 r r r Ž r q1.r12 12 12

K X X X
X
p r N 1 prN 1

1
X Xs m d ydŽ .0y Ž r y1.r r r2

D z

X Xqm yd qdŽ .0q r r Ž r q1.r

1 10 1
X X X= d q d q dp y1 p p p Ž p q1. pŽ .12 12 12

=
1 10 1

X X Xd q d q dŽ .N y1 N N N ŽN q1.N12 12 12

1
X Xq lq2m d ydŽ . Ž .y0 Ž p y1. p p p2

D x

X Xq lq2m yd qdŽ . Ž .q0 p p Ž p q1. p

1 10 1
X X X= d q d q dŽ .r y1 r r r Ž r q1.r12 12 12

=
1 10 1

X X Xd q d q dŽ .N y1 N N N ŽN q1.N12 12 12
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K X X X
X
p r N 3 prN 3

1
X Xs m d ydŽ .y0 Ž p y1. p p p2

D x

X Xqm yd qdŽ .q0 p p Ž p q1. p

1 10 1
X X X= d q d q dŽ .r y1 r r r Ž r q1.r12 12 12

=
1 10 1

X X Xd q d q dŽ .N y1 N N N ŽN q1.N12 12 12

1
X Xq lq2m d ydŽ . Ž .0y Ž r y1.r r r2

D z

X Xq lq2m yd qdŽ . Ž .0q r r Ž r q1.r

1 10 1
X X X= d q d q dp y1 p p p Ž p q1. pŽ .12 12 12

=
1 10 1

X X Xd q d q dŽ .N y1 N N N ŽN q1.N12 12 12

K X X X
X
p r N 1 prN 3

X X1 5l p y1 rŽ .
Xs = y d p y1 pŽ .

D xD z 12

3l X X 9l X Xp r Ž p q1.r
X Xy d q dp p Ž p q1. p12 12

X XlŽ p q2.r
Xy dŽ p q2. p12

5 3
X X= y d y dŽ .r y1 r r r12 12

9 1
X Xq d y dŽ r q1.r Ž r q2.r12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

X X1 m Ž .p r y2
Xq = dŽ .r y2 r

D xD z 12

9m X XŽ .p r y1
Xy dŽ .r y1 r12

X X X X3m 5m Ž .p r p r q1
Xq d q dŽ .r r r q1 r12 12

1 9
X X= d y dp y2 p p y1 pŽ . Ž .12 12

3 5
X Xq d q dp p Ž p q1. p12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

K X X X
X
p r N 3 prN 1

X X1 5m p y1 rŽ .
Xs = y d p y1 pŽ .

D xD z 12

3m X X 9m X Xp r Ž p q1.r
X Xy d q dp p Ž p q1. p12 12

X XmŽ p q2.r
Xy dŽ p q2. p12

5 3
X X= y d y dŽ .r y1 r r r12 12

9 1
X Xq d y dŽ r q1.r Ž r q2.r12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

X X1 l Ž .p r y2
Xq = dŽ .r y2 r

D xD z 12

9l X X 3l X XŽ .p r y1 p r
X Xy d q dŽ .r y1 r r r12 12

X X5l Ž .p r q1
Xq dŽ .r q1 r12

1 9
X X= d y dp y2 p p y1 pŽ . Ž .12 12

3 5
X Xq d q dp p Ž p q1. p12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

106Ž .

C.3. Scheme using the modified operators

C.3.1. Prediction scheme
Ž.The values within large braces ‘‘ ’’ are computed

only once and stored, and thus do not require evalua-
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tion at each time step. Intermediate variables, s X X
11 ,p r

s X X
13 , s X X

31 , s X X
33 , t X X

11 , t X X
13 , t X X

31 and t X X
33 , need not top r p r p r p r p r p r p r

be stored for every pX and rX simultaneously. If the
pX-loop is inside the rX-loop, s X X

11 is stored only forp r

the current rX and s X X
11 is stored only for rX y2,p r

rX y1, rX and rX q1, for example.

s11
X X sc X X yc X X , s13

X X sc X X yc X Xp r Ž p y1.r 1 p r 1 p r p Ž r y1.1 p r 1

s31
X X sc X X yc X X , s33

X X sc X X yc X Xp r Ž p y1.r 3 p r 3 p r p Ž r y1.3 p r 3

t11
X X sc X X yc X X ,p r Ž p q1.r 1 Ž p y1.r 1

t13
X X sc X X yc X Xp r p Ž r q1.1 p Ž r y1.1

t 31
X X sc X X yc X X ,p r Ž p q1.r 3 Ž p y1.r 3

t 33
X X sc X X yc X Xp r p Ž r q1.3 p Ž r y1.3

c N Xq1
X X s2c N X

X X yc N Xy1
X Xp r 1 p r 1 p r 1

D t 2 lq2mŽ .y0 11
X Xq =sp r2ž /r D x00

D t 2 lq2mŽ .q0 11
X Xy =sŽ p q1.r2ž /r D x00

D t 2 m0y 13
X Xq =sp r2ž /r D z00

D t 2 m0q 13
X Xy =sp Ž r q1.2ž /r D z00

D t 2 l X Xp y1 rŽ . 33
X Xy = tŽ p y1.rž /r 4D xD z00

D t 2 l X Xp q1 rŽ . 33
X Xq = tŽ p q1.rž /r 4D xD z00

D t 2 m X XŽ .p r y1 31
X Xy = tp Ž r y1.ž /r 4D xD z00

D t 2 m X XŽ .p r q1 31
X Xq = tp Ž r y1.ž /r 4D xD z00

D t 2
X X XN q1 N q1 N

X X X X X Xc §c q f 107Ž .p r 1 p r 1 p r 1ž /r00

D t 2 mX X X y0N q1 N N y1 31
X X X X X X X Xc s2c yc q =sp r 3 p r 3 p r 3 p r2ž /r D x00

D t 2 mq0 31
X Xy =sŽ p q1.r2ž /r D x00

D t 2 lq2mŽ . 0y 33
X Xq =sp r2ž /r D z00

D t 2 lq2mŽ . 0q 33
X Xy =sp Ž r q1.2ž /r D z00

D t 2 m X Xp y1 rŽ . 13
X Xy = tŽ p y1.rž /r 4D xD z00

D t 2 m X Xp q1 rŽ . 13
X Xq = tŽ p q1.rž /r 4D xD z00

D t 2 l X XŽ .p r y1 11
X Xy = tp Ž r y1.ž /r 4D xD z00

D t 2 l X XŽ .p r q1 11
X Xq = tp Ž r q1.ž /r 4D xD z00

D t 2
X X XN q1 N q1 N

X X X X X Xc §c q f 108Ž .p r 1 p r 1 p r 1ž /r00

16 muls and 28 adds

C.3.2. Correction scheme

a X X
U sc N Xq1

X X y2c N X

X X qc N Xy1
X X ,p r 1 p r 1 p r 1 p r 1

a X X
U sc N Xq1

X X y2c N X

X X qc N Xy1
X Xp r 3 p r 3 p r 3 p r 3

c X X
U sa X X

U q12c N
X X , c X X

U sa X X
U q12c N

X Xp r 1 p r 1 p r 1 p r 3 p r 3 p r 3

s11
X X
U sc X X

U yc X X
U , s13

X X
U sc X X

U yc X X
U

p r Ž p y1.r 1 p r 1 p r p Ž r y1.1 p r 1

s31
X X

U sc X X
U yc X X

U , s33
X X

U sc X X
U yc X X

U
p r Ž p y1.r 3 p r 3 p r p Ž r y1.3 p r 3

t11
X X
U ss11

X X
U y8 s11

X X
U y5s11

X X
U

p r Ž p y1.r p r Ž p q1.r

t13
X X
U sy5s13

X X
U y8 s13

X X
U qs13

X X
U

p r p r p Ž r q1. p Ž r q2.

t 31
X X

U ss31
X X
U y8 s31

X X
U y5s31

X X
U

p r Ž p y1.r p r Ž p q1.r

t 33
X X

U sy5s33
X X

U y8 s33
X X

U qs33
X X

U
p r p r p Ž r q1. p Ž r q2.
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1X XN q1 N q1
X X X Xc §c q yp r 1 p r 1 ž /144

w X X
U

X X
U= a qa� Ž p y1.Ž r y1.1 Ž p y1.Ž r q1.1

X X
U

X X
U xqa qaŽ p q1.Ž r y1.1 Ž p q1.Ž r q1.1

w X X
U

X X
U

X X
Uq10 a qa qaŽ p y1.r 1 p Ž r y1.1 p Ž r q1.1

X X
U x X X

UUqa q100a 4Ž p q1.r 1 p r 1

D t 2 lq2mŽ .y0 11UU
X Xq =sp r2ž /r 144D x00

D t 2 lq2mŽ .q0 11UU
X Xy =sŽ p q1.r2ž /r 144D x00

D t 2 m0y 13UU
X Xq =sp r2ž /r 144D z00

D t 2 m0q UU13
X Xy =sp Ž r q1.2ž /r 144D z00

D t 2 y5l X Xp y1 rŽ . 33U
X Xq = tŽ p y1.rž /r 1728D xD z00

D t 2 y3l X Xp r 33U
X Xq = tp rž /r 1728D xD z00

D t 2 9l X Xp q1 rŽ . 33U
X Xq = tŽ p q1.rž /r 1728D xD z00

D t 2 yl X Xp q2 rŽ . U
X Xq = tŽ p q2.rž /r 1728D xD z00

D t 2 m X XŽ .p r y2 U31
X Xq = tp Ž r y2.ž /r 1728D xD z00

D t 2 y9m X XŽ .p r y1 U31
X Xq = tp Ž r y1.ž /r 1728D xD z00

D t 2 3m X Xp r 31U
X Xq = tp rž /r 1728D xD z00

D t 2 5m X XŽ .p r q1 U31
X Xq = tp Ž r q1.ž /r 1728D xD z00

D t 2
X X XN q1 N q1 N

X X X X X Xc §c q f 109Ž .p r 1 p r 1 p r 1
r00

1X XN q1 N q1
X X X Xc §c q yp r 3 p r 3 ž /144

w X X
U

X X
U= a qa� Ž p y1.Ž r y1.3 Ž p y1.Ž r q1.3

X X
U

X X
U xqa qaŽ p q1.Ž r y1.3 Ž p q1.Ž r q1.3

w X X
U

X X
U

X X
Uq10 a qa qaŽ p y1.r 3 p Ž r y1.3 p Ž r q1.3

X X
U x X X

Uqa q100a 4Ž p q1.r 3 p r 3

D t 2 my0 31UU
X Xq =sp r2ž /r 144D x00

D t 2 2mq0 31UU
X Xy =sŽ p q1.r2ž /r 144D x00

D t 2 lq2mŽ . 0y 33UU
X Xq =sp r2ž /r 144D z00

D t 2 lq2mŽ . 0q UU33
X Xy =sp Ž r q1.2ž /r 144D z00

D t 2 y5m X Xp y1 rŽ . 13U
X Xq = tŽ p y1.rž /r 1728D xD z00

D t 2 y3m X Xp r 13U
X Xq = tp rž /r 1728D xD z00

D t 2 9m X Xp q1 rŽ . 13U
X Xq = tŽ p q1.rž /r 1728D xD z00

D t 2 ym X Xp q2 rŽ . 13U
X Xq = tŽ p q2.rž /r 1728D xD z00

D t 2 l X XŽ .p r y2 U11
X Xq = tp Ž r y2.ž /r 1728D xD z00

D t 2 y9l X XŽ .p r y1 U11
X Xq = tp Ž r y1.ž /r 1728D xD z00

D t 2 3l X Xp r 11U
X Xq = tp rž /r 1728D xD z00

D t 2 5l X XŽ .p r q1 U11
X Xq = tp Ž r q1.ž /r 1728D xD z00

D t 2
X X XN q1 N q1 N

X X X X X Xc §c q f 110Ž .p r 3 p r 3 p r 3ž /r00

40 muls and 62 adds
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C.3.3. Required floating point operations
The required number of floating point operations

Ž .for the conventional scheme prediction scheme is
16 muls and 28 adds. On the other hand, the required
number of floating point operations for the modified

Ž .scheme prediction and correction scheme is 56
Žmuls and 90 adds in total. We assume the source is

very localized and ignore the addition operations for
source term. If this assumption is not valid, 2 and 4
more addition operations are required for conven-
tional and modified scheme respectively. However,

.the required FLOPS are not essentially changed.
Thus, modified scheme required 3.5 times muls and
3.2 times adds. Numerical experiments show the
required CPU time using modified scheme is about
3.5 times as much as the CPU time using the conven-
tional scheme. About 30 times improvement in accu-
racy can be obtained at the cost of 3.5 times CPU
time, so the required CPU time for the modified
scheme is about 1r47 of that required by the con-
ventional scheme to achieve any given accuracy.

Appendix D. Heterogeneous 3-D problem

Our method can be extended to a general 3-D
heterogeneous medium. Here, we show a part of the
modified operators. The others can be defined in a
similar fashion. We have not yet used these operators
in actual computations, but there should be no spe-
cial difficulty.

A X X X X
X
p q r N g p qrNg

d X
g g

X X Xs r d y2d qd000 ŽN q1.N N N ŽN y1.N2
D t

=
1 10 1

X X Xd q d q dp y1 p p p Ž p q1. pŽ .12 12 12

1 10 1
X X X= d q d q dq y1 q q q Žq q1.qŽ .12 12 12

=
1 10 1

X X Xd q d q dŽ .r y1 r r r Ž r q1.r12 12 12

K X X X X
X
p q r N 1 p qrN 1

1
X Xs lq2m d ydŽ . Ž .y00 Ž p y1. p p p2

D x

X Xq lq2m yd qdŽ . Ž .000 p p Ž p q1. p

1 10 1
X X X= d q d q dq y1 q q q Žq q1.qŽ .12 12 12

=
1 10 1

X X Xd q d q dŽ .r y1 r r r Ž r q1.r12 12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

1
X Xq m d ydŽ .0y0 Žq y1.q q p2

D y

X Xqm yd qdŽ .0q0 q q Žq q1.q

1 10 1
X X X= d q d q dp y1 p p p Ž p q1. pŽ .12 12 12

1 10 1
X X X= d q d q dŽ .r y1 r r r Ž r q1.r12 12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

1
X Xq m d ydŽ .00y Ž r y1.r r r2

D z

X Xqm yd qdŽ .00q r r Ž r q1.r

1 10 1
X X X= d q d q dp y1 p p p Ž p q1. pŽ .12 12 12

1 10 1
X X X= d q d q dŽ .r y1 r r r Ž r q1.r12 12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

K X X X X
X
p q r N 1 p qrN 2

X X X1 5l p y1 q rŽ .
X Xs = y d p y1 pŽ .

D xD y 12

3l X X X 9l X X Xp q r Ž p q1.q r
X Xy d q dp p Ž p q1. p12 12

X X XlŽ p q2.q r
Xy dŽ p q2. p12
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5 3
X X= y d y dq y1 q q qŽ .12 12

9 1
X X X Xq d y dŽq q1. q Žq q2. q12 12

1 10 1
X X X= d q d q dŽ .r y1 r r r Ž r q1.r12 12 12

=
1 10 1

X X Xd q d q dŽ .N y1 N N N ŽN q1.N12 12 12

X X X1 mp q y2 rŽ .
Xq = d q y2 qŽ .

D xD y 12

9m X X X 3m X X Xp q y1 r p q rŽ .
X Xy d q dq y1 q q qŽ .12 12

X X X5mp q q1 rŽ .
Xq d q q1 qŽ .12

1 9
X X= d y dp y2 p p y1 pŽ . Ž .12 12

3 5
X Xq d q dp p Ž p q1. p12 12

1 10 1
X X X= d y d q dŽ .r y1 r r r Ž r q1.r12 12 12

1 10 1
X X X= d q d q dŽ .N y1 N N N ŽN q1.N12 12 12

111Ž .

D.1. Required floating point operations

We have not counted the number of floating point
operations required for the 3-D heterogeneous prob-
lem, but we can make a rough estimate. For 1-D
problems, our modified scheme required about 2

Žtimes as many floating point operations or CPU
. Žtime as the conventional scheme Geller and

.Takeuchi, 1998 . For 2-D problems, we showed
Žabove that the required floating point operations or

.CPU time is about 3.5 times that of the conventional
scheme. Because the ratio of required floating point
operations will linearly increase as the dimension of
the problem increases, the required CPU time will be
about 5–8 times for the 3-D problem. On the other

hand, the improvement in the accuracy will be inde-
pendent of the dimension of the problems, and about
30 times improvement can be expected for 3-D
problems. The solution error is proportional to the
square of the grid spacing, and the required CPU
time for 3-D problem is proportional to the fourth
power of the number of grid intervals. This means
that the required CPU time using the modified scheme

Ž 4r2 . Ž 4r2 .is between 30 r5 and 30 r8 , or roughly
1r100 of that required by the conventional operators
to achieve the same order accuracy for 3-D prob-
lems.
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