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1.  Introduction

• Are seismic quiescence and activation the precursors to a 
large earthquake ?

We need to use a practical statistical space-time model 

that represents the ordinary seismic activity. 
cf. the temporal ETAS model (Ogata, 1988)  

Difficulty

The quiescence is merely due to the reduction of aftershocks
Too subjective



2.  Development of the ETAS model

Time only (Ogata, 1988) Space-time (Ogata, 1998)



Ogata (1998)： 3 definitions of 
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Ogata (1998): Homogeneity and isotropy

Homogeneous Poisson field for background seismicity and
isotropic clustering

𝜇 𝑥, 𝑦 = 𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑺 = 2 × 2 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

Non-homogeneous Poisson field for background seismicity and
isotropic clustering

𝜇 𝑥, 𝑦 = 𝜈𝜇0 𝑥, 𝑦 , 𝑺 = 2 × 2 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

Non-(?)homogeneous Poisson field for background seismicity and
anisotropic clustering (p. 16)

𝜇 𝑥, 𝑦 = 𝜈𝜇0 𝑥, 𝑦 , 𝑺 = 2 × 2 positive-define symmetric matrix

Case 1.

Case 2.

Case 3.



Ogata (1998): Result

• The AIC always selected the g definition (7)

Power law

The Utsu-Seki formula

A : the area of the aftershock zone

M: the magnitude 

• Zuang et al. (2004) also shows that the (7) definition is best.
However, the diagnosis analysis based on the stchastic
declustering algorithm reveals a significant bias in the 
spatial scaling factor.



3.  Extension of the best fitted space-
time model

• The multiplication of time and space distribution

In Ogata (1998),

When the constraint is removed, the form (7) turns into 
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3.  Extension of the best fitted space-
time model

（10）

Zuang et al. (2004) implies that

This agrees with the famous empirical formulae

M: magnitude

A : area of the aftershock zone                                 

L : length of the aftershock  zone                               

（11）



4.  Application to the data sets

3 ways of definition of 
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4.  Application to the data sets

Homogeneous Poisson field for background seismicity and
isotropic clustering

𝜇 𝑥, 𝑦 = 𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑺 = 2 × 2 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

Non-homogeneous Poisson field for background seismicity and
isotropic clustering

𝜇 𝑥, 𝑦 = 𝜈𝜇0 𝑥, 𝑦 , 𝑺 = 2 × 2 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

Non-(?)homogeneous Poisson field for background seismicity and
anisotropic clustering (p. 16)

𝜇 𝑥, 𝑦 = 𝜈𝜇0 𝑥, 𝑦 , 𝑺 = 2 × 2 positive-define symmetric matrix

Case 1.

Case 2.

Case 3.

3 cases about homogeneity and isotropy 



4.  Application to the data sets

3 regions The data in 1926-1995 compiled by JMA

• Region A
 Off the east coast of Tohoku
 M 4.5 and larger
 Depth down to 100 km

• Region B
 Western part of Honshu Island
 M 4.0 and larger
 Depth down to 45 km

• Region C
 In and around Japan
 M 5.0 and larger
 Depth down to 65 km



Case 1. Case 3.Case 2.

Result:   AIC

(7) 0.0 -1037.7 -1059.3

(10) 0.6 -1057.6 -1081.4

(11) -0.6 -1053.3 -1077.6

(7) 0.0 -662.1 -678.6

(10) -3.2 -675.1 -693.8

(11) 19.0 -653.8 -672.3

(7) 0.0 -1426.7 -1453.6

(10) -13.2 -1435.0 -1521.1

(11) -0.7 -1436.7 -1522.5

Region A

Region B

Region C



Case 1. Case 3.Case 2.

Result:   p value

(7) 0.909 1.043 1.043

(10) 0.910 1.050 1.050

(11) 0.910 1.053 1.043

(7) 0.961 1.027 1.027

(10) 0.961 1.028 1.029

(11) 0.960 1.027 1.028

(7) 0.910 1.021 1.020

(10) 0.911 1.026 1.026

(11) 0.910 1.026 1.026

Region A

Region B

Region C

（9）

𝑝 < 1 indicates that the assumption of homogeneous background seismicity is inappropriate



Case 1. Case 3.Case 2.

Result:   AIC

(7) 0.0 -1037.7 -1059.3

(10) 0.6 -1057.6 -1081.4

(11) -0.6 -1053.3 -1077.6

(7) 0.0 -662.1 -678.6

(10) -3.2 -675.1 -693.8

(11) 19.0 -653.8 -672.3

(7) 0.0 -1426.7 -1453.6

(10) -13.2 -1435.0 -1521.1

(11) -0.7 -1436.7 -1522.5

Region A

Region B

Region C

• Both in Case 2. and Case 3., AIC in (10) is smaller than that in (7)

• The parameter values in Case 2. and Case 3. are similar

• AIC values in (10) and (11) are similar in Case 2. and Case 3.



Discussion

• The definition (10) improves the goodness-of-fit than (7)

• It is not very clear whether or not the anisotropic modeling 
improves the goodness-of-fit

• Reducing parameters may be possible by fixing 𝛾 in (11)

（10）



5.  Diagnostic analysis by stochastic   
declustering

• Zuang et al. (2004)

The probability of the j-th event being a background event  is

The probability of the j-th event being triggered by the i-th event is

The stochastic declustering is understood to be a simuation, a bootstrap resampling



• Zuang et al. (2004) 
In order to examine the approximation of the function form                               ,

Zuang et al. (2004) calculated the distances 𝑟𝑖,𝑗

between a trrigered event 𝑗 and its direct ancestor, event 𝑖

belong to a given magnitude band 𝑀𝑖 ∈ Δ𝑀

(see Eggermont and LaRiccia (2001), section 2.4)

5.  Diagnostic analysis by stochastic  
declustering
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JMA simulation



5.  Diagnostic analysis by stochastic   
declustering

Result
(7) 

 𝐷 plot alignment has a smaller slope

than that of the log-plot of  𝑑𝑒𝛼(𝑀−𝑀𝑐)

(10) 

similar plot obtained by the model (10)

The model with (10) has less bias
than Zuang et al. (2004)

JMA simulation
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6.  Concluding remarks

• We want to use earthquakes smaller than the minimum 
threshold magnitude

• However, the detected rate of the earthquakes in a catalogue 
changes both with location and with time

• Our next step is to develop the improved model, 
taking account of the space-time detection rate 
as a function of M, t, x, y


