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In these series of paper, authors derive many of empirical laws of 
earthquake by ETAS model.
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l Sornette and Sornette, 1999  
l Helmstetter and Sornette, 2002a  
l Sornette and  Helmstetter, 2002

In this paper [Helmstetter and Sornette, 2002b], we 
investigate aftershock diffusion.



Aftershock diffusion

• from 1 km/h to 1 km/year
• Not universally observed
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Why diffuse ?

Mogi, 1968
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Why diffuse ?

・Viscous relaxation process ( Rydelek and Sacks, 2001)

・Fluid transfer (Noir et al, 1997 , Nur and Booker, 1972,  Hudnut et al, 1989)

・Rate and State friction’s law and non-uniform stress ( Dieterich, 1994)

・Cascade process : Large aftershocks reproduce their secondary 
aftershocks close to them. ( this paper)



Flow
2. The ETAS model

Formulate ETAS model and refer the property of the model.
Numerical simulation.

3. Mapping of the ETAS model on the CTRW model
Derive the master equation of ETAS.
Establish a correspondence between the ETAS model and the CTRW    (Continuous 

Time Random Walk model).

4. critical regime n=1
Derive the joint probability distribution N(t,r)
Calculate the average distance between mainshock and its aftershock R as a power 

law function of elapsed time. (R~t^H)

5. New Question on Aftershocks derived from the CTRW Analogy

6. Discussion
Summarize result of different regime
Comparison to related study

7. Conclusion

2017/5/29 Seismogenesis Seminar 5



2. The ETAS model

Formulate ETAS model and refer the property of the model.
Numerical simulation.
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ETAS Model
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‘bare propagator’ = seismic rate directly induced by a single ‘mother’ i
𝑚" ∶ magnitude	𝑟" ∶ positon	𝑡" ∶ time

(1) Large earthquake reproduce many aftershocks. 

chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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(2) Normalized waiting time distribution = ‘bare’ omori’s law

chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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(3) Normalized spatial ‘jump’ distribution = isotropic elastic Green function dependence 

chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
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the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
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probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take
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which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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ary aftershocks which themselves may trigger tertiary after-
shocks and so on. They found that the global aftershock rate
decays according to an Omori law with an exponent
p!1"!#1, up to a characteristic time "25,26#

t*!c! n$%1"!&

"1"n" # 1/!, %1&

and then recovers the local Omori exponent p!1$! for
time larger than t*. Helmstetter and Sornette "26# extended
their analysis to the general ETAS model with magnitude
dependence, and considered both the subcritical and the su-
percritical regime, but still restricted the analysis to the tem-
poral distribution of the seismicity, without spatial depen-
dence. In the subcritical regime, they recovered the crossover
found by Sornette and Sornette "25#. In addition, Helmstetter
and Sornette "26# give the explicit mathematical formula for
the gradual transition between the Omori law with expo-
nent p!1"! for t%t* to the Omori law with exponent
p!1$! for t&t*. This smooth transition can be observed
in Fig. 2 on the line calculated for t*!109 days with n
#1. t* can thus be viewed as the time where the apparent
exponent p of the Omori law is approximately in between the
two asymptotic values 1"! and 1$! . A more rigorous
mathematical definition "26# is that t* is the characteristic
time scale such that 't* is the dimensionless variable of the
Laplace transform %with variable ') of the seismicity rate.
In the supercritical regime, Helmstetter and Sornette "26#

found a novel transition between a power-law decay with
exponent p!1"! at early times, similar to the subcritical
regime, to an exponential increase of the seismicity at large
times. The regime where ('b or equivalently 2(/3'B has
been found to lead to a new kind of critical stochastic finite-
time-singularity "27#, relying on the interplay between long-
memory and extreme fluctuations. Recall that the number of
aftershocks per earthquake increases as a power law )E2(/3

of the energy released by the mainshock whereas the number
of earthquakes of energy E decreases as the Gutenberg-
Richter law )1/E1$B. Intuitively, when 2(/3'B , the in-
crease in the rate of creation of aftershocks with the main-
shock energy more than compensates the decrease of the
probability to get a large mainshock when the mainshock
energy increases. This theory based solely on the ETAS
model has been found to account for the main observations
%power-law acceleration and discrete scale invariant struc-
ture& of critical rupture of heterogeneous materials, of the
largest sequence of starquakes ever attributed to a neutron
star as well as of some earthquake sequences "27#.
In the sequel, we extend the analytical study of the tem-

poral ETAS model "25–27# to the spatio-temporal domain.
To model the spatial distribution of aftershocks, we assume
that the distance between a mainshock and each of its direct
aftershock is drawn from a given distribution, independently
of the magnitude of the mainshock and of the delay between
the mainshock and its aftershocks. For illustration, but with-
out loss of generality, for the mapping to the continuous time
random walk %CTRW& model discussed later, we shall take a
power-law distribution of distances between earthquakes. We
take the simplest and most parsimonious hypothesis that

space, time, and magnitude are decoupled in the earthquake
propagator. Our first result is to establish a correspondence
between the ETAS model and the CTRW model, first intro-
duced by Montroll and Weiss "57# and used to model many
physical processes. We then build on this analogy to derive
the joint probability distribution of the times and locations of
aftershocks. We show analytically that, for sufficiently short
times t#t*, the average distance between a mainshock and
its aftershock increases subdiffusively as R*tH, where the
exponent H depends on the local Omori exponent 1$! and
on the distribution of the distances between an earthquake
and its aftershocks. We also demonstrate that the local Omori
law is not universal, but varies as a function of the distance
from the mainshock. Due to the diffusion of aftershocks with
time, the decay of aftershock is faster close to the mainshock
than at large distances. These nontrivial space-time couplings
occur notwithstanding the decoupling between space, time,
and magnitude in the ‘‘bare’’ propagator, and are due to the
existence of cascades of aftershocks.
A recent work of Krishnamurthy et al. "58# substantiates

the general modeling strategy used here of representing the
space-time dynamics of earthquakes by an effective stochas-
tic process %the ETAS model& entirely defined by two expo-
nents "corresponding to our + and H(! ,+) defined below#,
where + is the exponent of the power-law distribution of
jumps between successive active sites and H is the %sub-&
diffusion exponent. Indeed, Krishnamurthy et al. "58# show
that the Bak and Sneppen model and the Sneppen model of
extremal dynamics %corresponding to a certain class of self-
organized critical behavior "12#& can be completely charac-
terized by a suitable stochastic process called ‘‘linear frac-
tional stable motion.’’ Beyond recovering the scaling
exponents of this model, the stochastic process strategy pre-
dicts the conditional probabilities of successive activations at
different sites and thus offers important insights. We note
that this approach with the linear fractional stable motion is
extremely close in spirit as well as in form to our approach
mapping the ETAS model to the CTRW model. The ETAS
model can thus be taken to represent an effective stochastic
process of the complex self-organization of seismicity.

II. THE ETAS MODEL

A. Definitions and specific parametrization of the ETAS model

We assume that a given event %the ‘‘mother’’& of magni-
tude mi occurring at time t i and position r! i gives birth to
other events %‘‘daughters’’& of any possible magnitude cho-
sen with some independent Gutenberg-Richter distribution at
a later time between t and t$dt and at point r!(d! r to within
dr! at the rate

,mi% t"t i ,r!"r! i&!-%mi&.% t"t i&/%r!"r! i&. %2&

We will refer to ,mi
(t"t i ,r!"r! i) both as the seismic rate

induced by a single mother or as the ‘‘bare propagator.’’ It is
the product of three independent contributions.

%1& -(mi) gives the number of daughters born from a
mother with magnitude mi . This term will, in general, be
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𝜃 > 0,𝐻 𝑡 		is	Heaviside	function

𝜇 > 0



𝛼 and b
event-size distribution = GR law
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chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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number of daughter

𝛼	 > 	𝑏	: large event dominate earthquake triggering  
𝛼	 < 	𝑏	: small event dominate earthquake triggering

recent reanalysis of seismic catalogs indicates 𝛼	 < 	𝑏 and 𝛼 =0.8 
(Helmstetter, 2003)

but case of 𝛼	>0.5 is difficult to analyze (infinite variance 𝜌(𝑚))

therefore our model uses 𝑏 = 1, 𝛼 =0.5

(3)(6)



branching ratio n (Helmstetter & Sornette, 2002a)

n : average # of daughter created per mother event (summed by all possible magnitude)

due to cascades of aftershocks, total # of event is larger by the factor 1/(1-n) ~ 10
→ n is a branching parameter
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chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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n < 1 : subcritical regime (finally die out)
n > 1 : supercritical regime (exponentially increase)
n = 1 : critical regime (border between birth and death)



n is branching parameter

characteristic time 
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according to the nonstationary Poisson process of conditional
intensity !(t), and its magnitude is chosen according to the
Gutenberg-Richter distribution with parameter b. To deter-
mine the position in space of this new event, we first choose
its mother randomly among all preceding events with a prob-
ability proportional to their rate of aftershocks "mi

(t!t i)
evaluated at the time of the new event. Once the mother has
been chosen, we generate the distance r between the new
earthquake and its mother according to the power-law distri-
bution #(r!) given by Eq. $5%. The location of the new event
is determined by assuming an isotropic distribution of after-
shocks. By this rule, it is clear that new events tend to be
close, in general, to the last large earthquakes, leading to
space clustering.
Note that this two-steps procedure is equivalent to but

more convenient for a numerical implementation than the
one-step method, consisting of calculating at each point on a
fine space-covering grid the seismic rate, equal to the sum
over all preceding mothers weighted by the bare space #(r!)
and time &(t) propagators given by Eqs. $5% and $4%; after
normalizing, these rates then provide to each grid point a
probability for the event to occur on that point. The equiva-
lence between our two-step procedure and the direct calcu-
lation of the seismic rates is based on the law of conditional
probabilities: 'probability of next event $A%("'probability of
next event conditioned on its mother $event B%#'probability
of choosing the mother(, i.e., P(A ,B)"P(A!B)P(B).
Figure 1 shows the result of a numerical simulation of the

ETAS model which exhibits a diffusion of the seismic activ-
ity. We simulate a sequence of aftershocks and secondary

aftershocks starting from a mainshock of magnitude M"7,
with the following parameters: )"0.2, b"1, *"0.5, n
"1, and +"1. At early times, aftershocks are localized
close to the mainshock, and then diffuse and cluster close to
the largest aftershocks. This $sub-%diffusion is extremely
slow, as we shall quantify in the sequel. Our purpose is to
provide a theory for this process based on the ETAS model.
This theory will be tested by numerical simulations.
The different regimes are illustrated in Fig. 2, which

shows the seismicity rate N(t) for the temporal ETAS model
studied in Refs. '25,26( obtained by summing the seismic
activity over all space for the three cases n$1 $subcritical%,
n"1 $critical%, and n%1 $supercritical%. The subcritical re-
gime is characterized by the existence of the time scale t*
given by Eq. $1%. There is no difference between the critical
case n"1 and the subcritical case for t$t* $see Fig. 2%.
Indeed, the difference between the subcritical regime and the
critical regime can be observed only for t%t*. A simple way

FIG. 2. Seismicity rate N(t) for the temporal ETAS model cal-
culated for )"0.3 and c"0.001 day. The local law "(t),1/t1&),
which gives the probability distribution of times between an event
and its $first-generation% aftershocks is shown as a dashed line. The
global law N(t), which includes all secondary and successive after-
shocks generated by all the aftershocks of the first event, is shown
as a solid line for the three regimes, n$1, n"1, and n%1. In the
critical regime n"1, the seismicity rate follows a renormalized or
dressed Omori law ,1/tp for t%c with an exponent p"1!) ,
smaller than the exponent of the local law 1&) . In the subcritical
regime (n$1), there is a crossover from an Omori law 1/t1!) for
t$t* to 1/t1&) for t%t*. In the supercritical regime (n%1), there
is a crossover from an Omori law 1/t1!) for t$t* to an exponential
increase N(t)-exp(t/t*) for t%t*. We have chosen on purpose
values of n"0.9997$1 and n"1.0003%1 very close to 1 such that
the crossover time t*"109 days given by Eq. $1% is very large. In
real data, such large t* would be undistinguishable from an infinite
value corresponding to the critical regime n"1. This representation
is chosen for pedagogical purpose to make clear the different re-
gimes occurring at times smaller and larger than t*. In reality, we
can expect n to be significantly smaller or larger than 1, such that
t* becomes maybe of the order of months, years, or decades and the
observed Omori law will thus lie in the crossover regime, given an
apparent Omori exponent anywhere from 1!) to 1&) .

FIG. 1. Maps of seismicity generated by the ETAS model with
parameters b"1, )"0.2, +"1, d"1 km, *"0.5, c"0.001
day, and a branching ratio n"1. The mainshock occurs at the origin
of space with magnitude M"7. The minimum magnitude is fixed
at m0"0. The distances between mainshock and aftershocks follow
a power law with parameter +"1 and the local $or bare% Omori’s
law is ,1/t1&). According to the theory developed in the text, the
average distance between the first mainshock and the aftershocks is
thus expected to grow as R-tH with H"0.2 'Eq. $58%(. The two
plots are for different time periods of the same numerical simula-
tion, such that the same number of earthquakes N"3000 is ob-
tained for each graph. $a% Time between 0 and 0.3 days; $b% time
between 30 and 70 yr. Real aftershock sequences are indeed ob-
served to last decades up to a century. Large black dots indicate
large aftershocks around which other secondary aftershocks cluster.
The mainshock is shown by a black star. At early times, aftershocks
are localized close to the mainshock, and then diffuse and cluster
around the largest aftershocks.
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ary aftershocks which themselves may trigger tertiary after-
shocks and so on. They found that the global aftershock rate
decays according to an Omori law with an exponent
p!1"!#1, up to a characteristic time "25,26#

t*!c! n$%1"!&

"1"n" # 1/!, %1&

and then recovers the local Omori exponent p!1$! for
time larger than t*. Helmstetter and Sornette "26# extended
their analysis to the general ETAS model with magnitude
dependence, and considered both the subcritical and the su-
percritical regime, but still restricted the analysis to the tem-
poral distribution of the seismicity, without spatial depen-
dence. In the subcritical regime, they recovered the crossover
found by Sornette and Sornette "25#. In addition, Helmstetter
and Sornette "26# give the explicit mathematical formula for
the gradual transition between the Omori law with expo-
nent p!1"! for t%t* to the Omori law with exponent
p!1$! for t&t*. This smooth transition can be observed
in Fig. 2 on the line calculated for t*!109 days with n
#1. t* can thus be viewed as the time where the apparent
exponent p of the Omori law is approximately in between the
two asymptotic values 1"! and 1$! . A more rigorous
mathematical definition "26# is that t* is the characteristic
time scale such that 't* is the dimensionless variable of the
Laplace transform %with variable ') of the seismicity rate.
In the supercritical regime, Helmstetter and Sornette "26#

found a novel transition between a power-law decay with
exponent p!1"! at early times, similar to the subcritical
regime, to an exponential increase of the seismicity at large
times. The regime where ('b or equivalently 2(/3'B has
been found to lead to a new kind of critical stochastic finite-
time-singularity "27#, relying on the interplay between long-
memory and extreme fluctuations. Recall that the number of
aftershocks per earthquake increases as a power law )E2(/3

of the energy released by the mainshock whereas the number
of earthquakes of energy E decreases as the Gutenberg-
Richter law )1/E1$B. Intuitively, when 2(/3'B , the in-
crease in the rate of creation of aftershocks with the main-
shock energy more than compensates the decrease of the
probability to get a large mainshock when the mainshock
energy increases. This theory based solely on the ETAS
model has been found to account for the main observations
%power-law acceleration and discrete scale invariant struc-
ture& of critical rupture of heterogeneous materials, of the
largest sequence of starquakes ever attributed to a neutron
star as well as of some earthquake sequences "27#.
In the sequel, we extend the analytical study of the tem-

poral ETAS model "25–27# to the spatio-temporal domain.
To model the spatial distribution of aftershocks, we assume
that the distance between a mainshock and each of its direct
aftershock is drawn from a given distribution, independently
of the magnitude of the mainshock and of the delay between
the mainshock and its aftershocks. For illustration, but with-
out loss of generality, for the mapping to the continuous time
random walk %CTRW& model discussed later, we shall take a
power-law distribution of distances between earthquakes. We
take the simplest and most parsimonious hypothesis that

space, time, and magnitude are decoupled in the earthquake
propagator. Our first result is to establish a correspondence
between the ETAS model and the CTRW model, first intro-
duced by Montroll and Weiss "57# and used to model many
physical processes. We then build on this analogy to derive
the joint probability distribution of the times and locations of
aftershocks. We show analytically that, for sufficiently short
times t#t*, the average distance between a mainshock and
its aftershock increases subdiffusively as R*tH, where the
exponent H depends on the local Omori exponent 1$! and
on the distribution of the distances between an earthquake
and its aftershocks. We also demonstrate that the local Omori
law is not universal, but varies as a function of the distance
from the mainshock. Due to the diffusion of aftershocks with
time, the decay of aftershock is faster close to the mainshock
than at large distances. These nontrivial space-time couplings
occur notwithstanding the decoupling between space, time,
and magnitude in the ‘‘bare’’ propagator, and are due to the
existence of cascades of aftershocks.
A recent work of Krishnamurthy et al. "58# substantiates

the general modeling strategy used here of representing the
space-time dynamics of earthquakes by an effective stochas-
tic process %the ETAS model& entirely defined by two expo-
nents "corresponding to our + and H(! ,+) defined below#,
where + is the exponent of the power-law distribution of
jumps between successive active sites and H is the %sub-&
diffusion exponent. Indeed, Krishnamurthy et al. "58# show
that the Bak and Sneppen model and the Sneppen model of
extremal dynamics %corresponding to a certain class of self-
organized critical behavior "12#& can be completely charac-
terized by a suitable stochastic process called ‘‘linear frac-
tional stable motion.’’ Beyond recovering the scaling
exponents of this model, the stochastic process strategy pre-
dicts the conditional probabilities of successive activations at
different sites and thus offers important insights. We note
that this approach with the linear fractional stable motion is
extremely close in spirit as well as in form to our approach
mapping the ETAS model to the CTRW model. The ETAS
model can thus be taken to represent an effective stochastic
process of the complex self-organization of seismicity.

II. THE ETAS MODEL

A. Definitions and specific parametrization of the ETAS model

We assume that a given event %the ‘‘mother’’& of magni-
tude mi occurring at time t i and position r! i gives birth to
other events %‘‘daughters’’& of any possible magnitude cho-
sen with some independent Gutenberg-Richter distribution at
a later time between t and t$dt and at point r!(d! r to within
dr! at the rate

,mi% t"t i ,r!"r! i&!-%mi&.% t"t i&/%r!"r! i&. %2&

We will refer to ,mi
(t"t i ,r!"r! i) both as the seismic rate

induced by a single mother or as the ‘‘bare propagator.’’ It is
the product of three independent contributions.

%1& -(mi) gives the number of daughters born from a
mother with magnitude mi . This term will, in general, be
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direct	aftershock
𝑝 = 1 + 𝜃

t<t*,	all	regime	behave identically		

all	aftershock
𝑝 = 1 − 𝜃

t*

(1)

n=1.0003

n=0.9997

n=1



Numerical simulation : method (Ogata, 1998 & 1999)

• initial condition
t=0 r=0 M7 event occur 

• algorithm
decide time of next event by nonstationary poisson process (8)

→ decide magnitude by GR law

→ select mother in all preceding events by (2)

→ decide location of new event  by (5)

• parameter set
𝜃 = 0.2, 𝑏 = 1, 𝛼 = 0.5, 𝑛 = 1, 𝜇 = 1,𝑚S = 0, 𝑑 = 1km, 𝑐 = 0.001day
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chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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ary aftershocks which themselves may trigger tertiary after-
shocks and so on. They found that the global aftershock rate
decays according to an Omori law with an exponent
p!1"!#1, up to a characteristic time "25,26#

t*!c! n$%1"!&

"1"n" # 1/!, %1&

and then recovers the local Omori exponent p!1$! for
time larger than t*. Helmstetter and Sornette "26# extended
their analysis to the general ETAS model with magnitude
dependence, and considered both the subcritical and the su-
percritical regime, but still restricted the analysis to the tem-
poral distribution of the seismicity, without spatial depen-
dence. In the subcritical regime, they recovered the crossover
found by Sornette and Sornette "25#. In addition, Helmstetter
and Sornette "26# give the explicit mathematical formula for
the gradual transition between the Omori law with expo-
nent p!1"! for t%t* to the Omori law with exponent
p!1$! for t&t*. This smooth transition can be observed
in Fig. 2 on the line calculated for t*!109 days with n
#1. t* can thus be viewed as the time where the apparent
exponent p of the Omori law is approximately in between the
two asymptotic values 1"! and 1$! . A more rigorous
mathematical definition "26# is that t* is the characteristic
time scale such that 't* is the dimensionless variable of the
Laplace transform %with variable ') of the seismicity rate.
In the supercritical regime, Helmstetter and Sornette "26#

found a novel transition between a power-law decay with
exponent p!1"! at early times, similar to the subcritical
regime, to an exponential increase of the seismicity at large
times. The regime where ('b or equivalently 2(/3'B has
been found to lead to a new kind of critical stochastic finite-
time-singularity "27#, relying on the interplay between long-
memory and extreme fluctuations. Recall that the number of
aftershocks per earthquake increases as a power law )E2(/3

of the energy released by the mainshock whereas the number
of earthquakes of energy E decreases as the Gutenberg-
Richter law )1/E1$B. Intuitively, when 2(/3'B , the in-
crease in the rate of creation of aftershocks with the main-
shock energy more than compensates the decrease of the
probability to get a large mainshock when the mainshock
energy increases. This theory based solely on the ETAS
model has been found to account for the main observations
%power-law acceleration and discrete scale invariant struc-
ture& of critical rupture of heterogeneous materials, of the
largest sequence of starquakes ever attributed to a neutron
star as well as of some earthquake sequences "27#.
In the sequel, we extend the analytical study of the tem-

poral ETAS model "25–27# to the spatio-temporal domain.
To model the spatial distribution of aftershocks, we assume
that the distance between a mainshock and each of its direct
aftershock is drawn from a given distribution, independently
of the magnitude of the mainshock and of the delay between
the mainshock and its aftershocks. For illustration, but with-
out loss of generality, for the mapping to the continuous time
random walk %CTRW& model discussed later, we shall take a
power-law distribution of distances between earthquakes. We
take the simplest and most parsimonious hypothesis that

space, time, and magnitude are decoupled in the earthquake
propagator. Our first result is to establish a correspondence
between the ETAS model and the CTRW model, first intro-
duced by Montroll and Weiss "57# and used to model many
physical processes. We then build on this analogy to derive
the joint probability distribution of the times and locations of
aftershocks. We show analytically that, for sufficiently short
times t#t*, the average distance between a mainshock and
its aftershock increases subdiffusively as R*tH, where the
exponent H depends on the local Omori exponent 1$! and
on the distribution of the distances between an earthquake
and its aftershocks. We also demonstrate that the local Omori
law is not universal, but varies as a function of the distance
from the mainshock. Due to the diffusion of aftershocks with
time, the decay of aftershock is faster close to the mainshock
than at large distances. These nontrivial space-time couplings
occur notwithstanding the decoupling between space, time,
and magnitude in the ‘‘bare’’ propagator, and are due to the
existence of cascades of aftershocks.
A recent work of Krishnamurthy et al. "58# substantiates

the general modeling strategy used here of representing the
space-time dynamics of earthquakes by an effective stochas-
tic process %the ETAS model& entirely defined by two expo-
nents "corresponding to our + and H(! ,+) defined below#,
where + is the exponent of the power-law distribution of
jumps between successive active sites and H is the %sub-&
diffusion exponent. Indeed, Krishnamurthy et al. "58# show
that the Bak and Sneppen model and the Sneppen model of
extremal dynamics %corresponding to a certain class of self-
organized critical behavior "12#& can be completely charac-
terized by a suitable stochastic process called ‘‘linear frac-
tional stable motion.’’ Beyond recovering the scaling
exponents of this model, the stochastic process strategy pre-
dicts the conditional probabilities of successive activations at
different sites and thus offers important insights. We note
that this approach with the linear fractional stable motion is
extremely close in spirit as well as in form to our approach
mapping the ETAS model to the CTRW model. The ETAS
model can thus be taken to represent an effective stochastic
process of the complex self-organization of seismicity.

II. THE ETAS MODEL

A. Definitions and specific parametrization of the ETAS model

We assume that a given event %the ‘‘mother’’& of magni-
tude mi occurring at time t i and position r! i gives birth to
other events %‘‘daughters’’& of any possible magnitude cho-
sen with some independent Gutenberg-Richter distribution at
a later time between t and t$dt and at point r!(d! r to within
dr! at the rate

,mi% t"t i ,r!"r! i&!-%mi&.% t"t i&/%r!"r! i&. %2&

We will refer to ,mi
(t"t i ,r!"r! i) both as the seismic rate

induced by a single mother or as the ‘‘bare propagator.’’ It is
the product of three independent contributions.

%1& -(mi) gives the number of daughters born from a
mother with magnitude mi . This term will, in general, be
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chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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according to the nonstationary Poisson process of conditional
intensity !(t), and its magnitude is chosen according to the
Gutenberg-Richter distribution with parameter b. To deter-
mine the position in space of this new event, we first choose
its mother randomly among all preceding events with a prob-
ability proportional to their rate of aftershocks "mi

(t!t i)
evaluated at the time of the new event. Once the mother has
been chosen, we generate the distance r between the new
earthquake and its mother according to the power-law distri-
bution #(r!) given by Eq. $5%. The location of the new event
is determined by assuming an isotropic distribution of after-
shocks. By this rule, it is clear that new events tend to be
close, in general, to the last large earthquakes, leading to
space clustering.
Note that this two-steps procedure is equivalent to but

more convenient for a numerical implementation than the
one-step method, consisting of calculating at each point on a
fine space-covering grid the seismic rate, equal to the sum
over all preceding mothers weighted by the bare space #(r!)
and time &(t) propagators given by Eqs. $5% and $4%; after
normalizing, these rates then provide to each grid point a
probability for the event to occur on that point. The equiva-
lence between our two-step procedure and the direct calcu-
lation of the seismic rates is based on the law of conditional
probabilities: 'probability of next event $A%("'probability of
next event conditioned on its mother $event B%#'probability
of choosing the mother(, i.e., P(A ,B)"P(A!B)P(B).
Figure 1 shows the result of a numerical simulation of the

ETAS model which exhibits a diffusion of the seismic activ-
ity. We simulate a sequence of aftershocks and secondary

aftershocks starting from a mainshock of magnitude M"7,
with the following parameters: )"0.2, b"1, *"0.5, n
"1, and +"1. At early times, aftershocks are localized
close to the mainshock, and then diffuse and cluster close to
the largest aftershocks. This $sub-%diffusion is extremely
slow, as we shall quantify in the sequel. Our purpose is to
provide a theory for this process based on the ETAS model.
This theory will be tested by numerical simulations.
The different regimes are illustrated in Fig. 2, which

shows the seismicity rate N(t) for the temporal ETAS model
studied in Refs. '25,26( obtained by summing the seismic
activity over all space for the three cases n$1 $subcritical%,
n"1 $critical%, and n%1 $supercritical%. The subcritical re-
gime is characterized by the existence of the time scale t*
given by Eq. $1%. There is no difference between the critical
case n"1 and the subcritical case for t$t* $see Fig. 2%.
Indeed, the difference between the subcritical regime and the
critical regime can be observed only for t%t*. A simple way

FIG. 2. Seismicity rate N(t) for the temporal ETAS model cal-
culated for )"0.3 and c"0.001 day. The local law "(t),1/t1&),
which gives the probability distribution of times between an event
and its $first-generation% aftershocks is shown as a dashed line. The
global law N(t), which includes all secondary and successive after-
shocks generated by all the aftershocks of the first event, is shown
as a solid line for the three regimes, n$1, n"1, and n%1. In the
critical regime n"1, the seismicity rate follows a renormalized or
dressed Omori law ,1/tp for t%c with an exponent p"1!) ,
smaller than the exponent of the local law 1&) . In the subcritical
regime (n$1), there is a crossover from an Omori law 1/t1!) for
t$t* to 1/t1&) for t%t*. In the supercritical regime (n%1), there
is a crossover from an Omori law 1/t1!) for t$t* to an exponential
increase N(t)-exp(t/t*) for t%t*. We have chosen on purpose
values of n"0.9997$1 and n"1.0003%1 very close to 1 such that
the crossover time t*"109 days given by Eq. $1% is very large. In
real data, such large t* would be undistinguishable from an infinite
value corresponding to the critical regime n"1. This representation
is chosen for pedagogical purpose to make clear the different re-
gimes occurring at times smaller and larger than t*. In reality, we
can expect n to be significantly smaller or larger than 1, such that
t* becomes maybe of the order of months, years, or decades and the
observed Omori law will thus lie in the crossover regime, given an
apparent Omori exponent anywhere from 1!) to 1&) .

FIG. 1. Maps of seismicity generated by the ETAS model with
parameters b"1, )"0.2, +"1, d"1 km, *"0.5, c"0.001
day, and a branching ratio n"1. The mainshock occurs at the origin
of space with magnitude M"7. The minimum magnitude is fixed
at m0"0. The distances between mainshock and aftershocks follow
a power law with parameter +"1 and the local $or bare% Omori’s
law is ,1/t1&). According to the theory developed in the text, the
average distance between the first mainshock and the aftershocks is
thus expected to grow as R-tH with H"0.2 'Eq. $58%(. The two
plots are for different time periods of the same numerical simula-
tion, such that the same number of earthquakes N"3000 is ob-
tained for each graph. $a% Time between 0 and 0.3 days; $b% time
between 30 and 70 yr. Real aftershock sequences are indeed ob-
served to last decades up to a century. Large black dots indicate
large aftershocks around which other secondary aftershocks cluster.
The mainshock is shown by a black star. At early times, aftershocks
are localized close to the mainshock, and then diffuse and cluster
around the largest aftershocks.
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correlation dimension D ~1.5
[0,70]yrs : D ~1.85  [7,70]yrs : D ~1.7

reported active fault system: D = [1.65:1.95]
to see this is to realize that the critical regime n!1 gives
t*!"! , meaning that, in the critical regime, one is always
in the situation t#t*.
It is interesting to note that the spatial distribution of epi-

centers shown in the right panel of Fig. 1 has the visual
appearance of a fractal set of points. This is confirmed by the
calculation of the correlation dimension of this set of N
!3000 points generated in the time interval "30, 70# yrs,
which is found approximately equal to D2!1.5$0.05 over
more than two decades in spatial scales, as shown in Fig. 3.
If we use instead all 30 000 events of the simulation per-
formed up to time t!70 yr, we find D2!1.85$0.05 while
the correlation dimension of the geometrical set made of the
epicenters of the 10 000 last events $time interval "7, 70# yr%
is D!1.7$0.05, also over more than two decades in scale.
These values are similar to those reported for two-
dimensional maps of active fault systems "60–62,8#, and are
in good agreement with D2 values in the range "1.65,1.95#
measured for aftershocks epicenters "63#. The fractal cluster-
ing of the earthquake epicenters, according to the ETAS
model, occurs because of a self-similar process taking place
on many different scales. However, the description of this
multiscale process solely in terms of a single fractal dimen-
sion fails to fully embody the complex spatial superposition
of local ‘‘singularities’’ associated with each aftershock on
the one hand and finite-size effects $stemming from the finite
lifetime of each aftershock sequence% on the other hand.
Each event indeed creates its cloud of direct aftershocks
which can be characterized by its singular exponent 1%& for
&'1 and 0 for &&1, defined by the scaling
()0

Rrdr/r1"&(R1%& of the ‘‘mass’’ of the cloud with its
radius R. Finite-size effects and randomness have been docu-
mented to generate realistic but sometimes spurious fractal
signatures "64–67#. This problem requires a special study
which is left for another work.

D. Relationship with the space-independent ETAS model

The spatial ETAS model reduces to the space-independent
ETAS model solved in Ref. "26# by integrating the dressed
propagator obtained below over all space. In the Fourier rep-
resentation "see expression $26%# this corresponds to putting
the wave number k to zero. Indeed, for k!0, the Fourier
transform amounts to performing a simple integration over
all space. Since *̂(k!!0! )!1, expression $26% derived below
reduces to the form studied at length in Ref. "26#. Therefore,
all results reported previously hold also for the version of the
space-dependent ETAS model studied here, when averaging
over the whole space. This is an important property that all
the solutions discussed below must obey.

III. MAPPING OF THE ETAS MODEL ON THE CTRW
MODEL

In order to study the space-time properties of the ETAS
model, it is very useful to use a correspondence between the
ETAS model and the CTRW that we establish here. In this
way, we can adapt and use the wealth of results previously
derived for the CTRW. But first, let us demonstrate the cor-
respondence between the ETAS and CTRW models. For this,
our strategy is to derive the master equations for both models
and show that they are identical.

A. The master equation of the ETAS model

The ETAS model can be rephrased by defining the rate
+mi→m(t%t i ,r!%r! i) at which a given event $the ‘‘mother’’%
of magnitude mi,m0 occurring at time t i and position r! i
gives birth to other events $‘‘daughters’’% of specified mag-
nitude m at a later time between t and t"dt and at point r! to
within an infinitesimal volume !dr!!. Note that the only dif-
ference with respect to the previous definition $2% is that we
now specify also the magnitude m of the daughter.
+mi→m(t%t i ,r!%r! i) is given by

+mi→m$ t%t i ,r!%r! i%!-$mi→m %.$ t%t i%*$r!%r! i%, $9%

where .(t%t i) and *(r!%r! i) are the same as previously
while

-$mi→m %!P$m %-$mi%. $10%

With the parametrizations $3% and $6%, this reads

-$mi→m %!nln$10%$b%/%10/(mi%m0)10%b(m%m0).
$11%

Let us consider the case where there is an origin of time t
!0 at which we start recording the rate of earthquakes, as-
suming that a large earthquake has just occurred at t!0 and
somehow reset the clock. In the following calculation, we
will forget about the effect of events at times prior to t!0
and count all aftershocks that are created only by this main
shock.

FIG. 3. Plot of the correlation function of the 3 000 epicenters
generated in the time interval "30, 70# yrs and shown in the right
panel of Fig. 1, calculated following Grassberger-Procaccia’s algo-
rithm, as a function of scale r, in double-logarithmic scales.
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according to the nonstationary Poisson process of conditional
intensity !(t), and its magnitude is chosen according to the
Gutenberg-Richter distribution with parameter b. To deter-
mine the position in space of this new event, we first choose
its mother randomly among all preceding events with a prob-
ability proportional to their rate of aftershocks "mi

(t!t i)
evaluated at the time of the new event. Once the mother has
been chosen, we generate the distance r between the new
earthquake and its mother according to the power-law distri-
bution #(r!) given by Eq. $5%. The location of the new event
is determined by assuming an isotropic distribution of after-
shocks. By this rule, it is clear that new events tend to be
close, in general, to the last large earthquakes, leading to
space clustering.
Note that this two-steps procedure is equivalent to but

more convenient for a numerical implementation than the
one-step method, consisting of calculating at each point on a
fine space-covering grid the seismic rate, equal to the sum
over all preceding mothers weighted by the bare space #(r!)
and time &(t) propagators given by Eqs. $5% and $4%; after
normalizing, these rates then provide to each grid point a
probability for the event to occur on that point. The equiva-
lence between our two-step procedure and the direct calcu-
lation of the seismic rates is based on the law of conditional
probabilities: 'probability of next event $A%("'probability of
next event conditioned on its mother $event B%#'probability
of choosing the mother(, i.e., P(A ,B)"P(A!B)P(B).
Figure 1 shows the result of a numerical simulation of the

ETAS model which exhibits a diffusion of the seismic activ-
ity. We simulate a sequence of aftershocks and secondary

aftershocks starting from a mainshock of magnitude M"7,
with the following parameters: )"0.2, b"1, *"0.5, n
"1, and +"1. At early times, aftershocks are localized
close to the mainshock, and then diffuse and cluster close to
the largest aftershocks. This $sub-%diffusion is extremely
slow, as we shall quantify in the sequel. Our purpose is to
provide a theory for this process based on the ETAS model.
This theory will be tested by numerical simulations.
The different regimes are illustrated in Fig. 2, which

shows the seismicity rate N(t) for the temporal ETAS model
studied in Refs. '25,26( obtained by summing the seismic
activity over all space for the three cases n$1 $subcritical%,
n"1 $critical%, and n%1 $supercritical%. The subcritical re-
gime is characterized by the existence of the time scale t*
given by Eq. $1%. There is no difference between the critical
case n"1 and the subcritical case for t$t* $see Fig. 2%.
Indeed, the difference between the subcritical regime and the
critical regime can be observed only for t%t*. A simple way

FIG. 2. Seismicity rate N(t) for the temporal ETAS model cal-
culated for )"0.3 and c"0.001 day. The local law "(t),1/t1&),
which gives the probability distribution of times between an event
and its $first-generation% aftershocks is shown as a dashed line. The
global law N(t), which includes all secondary and successive after-
shocks generated by all the aftershocks of the first event, is shown
as a solid line for the three regimes, n$1, n"1, and n%1. In the
critical regime n"1, the seismicity rate follows a renormalized or
dressed Omori law ,1/tp for t%c with an exponent p"1!) ,
smaller than the exponent of the local law 1&) . In the subcritical
regime (n$1), there is a crossover from an Omori law 1/t1!) for
t$t* to 1/t1&) for t%t*. In the supercritical regime (n%1), there
is a crossover from an Omori law 1/t1!) for t$t* to an exponential
increase N(t)-exp(t/t*) for t%t*. We have chosen on purpose
values of n"0.9997$1 and n"1.0003%1 very close to 1 such that
the crossover time t*"109 days given by Eq. $1% is very large. In
real data, such large t* would be undistinguishable from an infinite
value corresponding to the critical regime n"1. This representation
is chosen for pedagogical purpose to make clear the different re-
gimes occurring at times smaller and larger than t*. In reality, we
can expect n to be significantly smaller or larger than 1, such that
t* becomes maybe of the order of months, years, or decades and the
observed Omori law will thus lie in the crossover regime, given an
apparent Omori exponent anywhere from 1!) to 1&) .

FIG. 1. Maps of seismicity generated by the ETAS model with
parameters b"1, )"0.2, +"1, d"1 km, *"0.5, c"0.001
day, and a branching ratio n"1. The mainshock occurs at the origin
of space with magnitude M"7. The minimum magnitude is fixed
at m0"0. The distances between mainshock and aftershocks follow
a power law with parameter +"1 and the local $or bare% Omori’s
law is ,1/t1&). According to the theory developed in the text, the
average distance between the first mainshock and the aftershocks is
thus expected to grow as R-tH with H"0.2 'Eq. $58%(. The two
plots are for different time periods of the same numerical simula-
tion, such that the same number of earthquakes N"3000 is ob-
tained for each graph. $a% Time between 0 and 0.3 days; $b% time
between 30 and 70 yr. Real aftershock sequences are indeed ob-
served to last decades up to a century. Large black dots indicate
large aftershocks around which other secondary aftershocks cluster.
The mainshock is shown by a black star. At early times, aftershocks
are localized close to the mainshock, and then diffuse and cluster
around the largest aftershocks.

A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E 66, 061104 $2002%

061104-6



3. Mapping of the ETAS model on 
the CTRW model

Derive the master equation of ETAS.
Establish a correspondence between the ETAS model and the CTRW    

(Continuous Time Random Walk model).
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to see this is to realize that the critical regime n!1 gives
t*!"! , meaning that, in the critical regime, one is always
in the situation t#t*.
It is interesting to note that the spatial distribution of epi-

centers shown in the right panel of Fig. 1 has the visual
appearance of a fractal set of points. This is confirmed by the
calculation of the correlation dimension of this set of N
!3000 points generated in the time interval "30, 70# yrs,
which is found approximately equal to D2!1.5$0.05 over
more than two decades in spatial scales, as shown in Fig. 3.
If we use instead all 30 000 events of the simulation per-
formed up to time t!70 yr, we find D2!1.85$0.05 while
the correlation dimension of the geometrical set made of the
epicenters of the 10 000 last events $time interval "7, 70# yr%
is D!1.7$0.05, also over more than two decades in scale.
These values are similar to those reported for two-
dimensional maps of active fault systems "60–62,8#, and are
in good agreement with D2 values in the range "1.65,1.95#
measured for aftershocks epicenters "63#. The fractal cluster-
ing of the earthquake epicenters, according to the ETAS
model, occurs because of a self-similar process taking place
on many different scales. However, the description of this
multiscale process solely in terms of a single fractal dimen-
sion fails to fully embody the complex spatial superposition
of local ‘‘singularities’’ associated with each aftershock on
the one hand and finite-size effects $stemming from the finite
lifetime of each aftershock sequence% on the other hand.
Each event indeed creates its cloud of direct aftershocks
which can be characterized by its singular exponent 1%& for
&'1 and 0 for &&1, defined by the scaling
()0

Rrdr/r1"&(R1%& of the ‘‘mass’’ of the cloud with its
radius R. Finite-size effects and randomness have been docu-
mented to generate realistic but sometimes spurious fractal
signatures "64–67#. This problem requires a special study
which is left for another work.

D. Relationship with the space-independent ETAS model

The spatial ETAS model reduces to the space-independent
ETAS model solved in Ref. "26# by integrating the dressed
propagator obtained below over all space. In the Fourier rep-
resentation "see expression $26%# this corresponds to putting
the wave number k to zero. Indeed, for k!0, the Fourier
transform amounts to performing a simple integration over
all space. Since *̂(k!!0! )!1, expression $26% derived below
reduces to the form studied at length in Ref. "26#. Therefore,
all results reported previously hold also for the version of the
space-dependent ETAS model studied here, when averaging
over the whole space. This is an important property that all
the solutions discussed below must obey.

III. MAPPING OF THE ETAS MODEL ON THE CTRW
MODEL

In order to study the space-time properties of the ETAS
model, it is very useful to use a correspondence between the
ETAS model and the CTRW that we establish here. In this
way, we can adapt and use the wealth of results previously
derived for the CTRW. But first, let us demonstrate the cor-
respondence between the ETAS and CTRW models. For this,
our strategy is to derive the master equations for both models
and show that they are identical.

A. The master equation of the ETAS model

The ETAS model can be rephrased by defining the rate
+mi→m(t%t i ,r!%r! i) at which a given event $the ‘‘mother’’%
of magnitude mi,m0 occurring at time t i and position r! i
gives birth to other events $‘‘daughters’’% of specified mag-
nitude m at a later time between t and t"dt and at point r! to
within an infinitesimal volume !dr!!. Note that the only dif-
ference with respect to the previous definition $2% is that we
now specify also the magnitude m of the daughter.
+mi→m(t%t i ,r!%r! i) is given by

+mi→m$ t%t i ,r!%r! i%!-$mi→m %.$ t%t i%*$r!%r! i%, $9%

where .(t%t i) and *(r!%r! i) are the same as previously
while

-$mi→m %!P$m %-$mi%. $10%

With the parametrizations $3% and $6%, this reads

-$mi→m %!nln$10%$b%/%10/(mi%m0)10%b(m%m0).
$11%

Let us consider the case where there is an origin of time t
!0 at which we start recording the rate of earthquakes, as-
suming that a large earthquake has just occurred at t!0 and
somehow reset the clock. In the following calculation, we
will forget about the effect of events at times prior to t!0
and count all aftershocks that are created only by this main
shock.

FIG. 3. Plot of the correlation function of the 3 000 epicenters
generated in the time interval "30, 70# yrs and shown in the right
panel of Fig. 1, calculated following Grassberger-Procaccia’s algo-
rithm, as a function of scale r, in double-logarithmic scales.
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ETAS model solved in Ref. "26# by integrating the dressed
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resentation "see expression $26%# this corresponds to putting
the wave number k to zero. Indeed, for k!0, the Fourier
transform amounts to performing a simple integration over
all space. Since *̂(k!!0! )!1, expression $26% derived below
reduces to the form studied at length in Ref. "26#. Therefore,
all results reported previously hold also for the version of the
space-dependent ETAS model studied here, when averaging
over the whole space. This is an important property that all
the solutions discussed below must obey.
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In order to study the space-time properties of the ETAS
model, it is very useful to use a correspondence between the
ETAS model and the CTRW that we establish here. In this
way, we can adapt and use the wealth of results previously
derived for the CTRW. But first, let us demonstrate the cor-
respondence between the ETAS and CTRW models. For this,
our strategy is to derive the master equations for both models
and show that they are identical.

A. The master equation of the ETAS model

The ETAS model can be rephrased by defining the rate
+mi→m(t%t i ,r!%r! i) at which a given event $the ‘‘mother’’%
of magnitude mi,m0 occurring at time t i and position r! i
gives birth to other events $‘‘daughters’’% of specified mag-
nitude m at a later time between t and t"dt and at point r! to
within an infinitesimal volume !dr!!. Note that the only dif-
ference with respect to the previous definition $2% is that we
now specify also the magnitude m of the daughter.
+mi→m(t%t i ,r!%r! i) is given by
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Let us consider the case where there is an origin of time t
!0 at which we start recording the rate of earthquakes, as-
suming that a large earthquake has just occurred at t!0 and
somehow reset the clock. In the following calculation, we
will forget about the effect of events at times prior to t!0
and count all aftershocks that are created only by this main
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to see this is to realize that the critical regime n!1 gives
t*!"! , meaning that, in the critical regime, one is always
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measured for aftershocks epicenters "63#. The fractal cluster-
ing of the earthquake epicenters, according to the ETAS
model, occurs because of a self-similar process taking place
on many different scales. However, the description of this
multiscale process solely in terms of a single fractal dimen-
sion fails to fully embody the complex spatial superposition
of local ‘‘singularities’’ associated with each aftershock on
the one hand and finite-size effects $stemming from the finite
lifetime of each aftershock sequence% on the other hand.
Each event indeed creates its cloud of direct aftershocks
which can be characterized by its singular exponent 1%& for
&'1 and 0 for &&1, defined by the scaling
()0

Rrdr/r1"&(R1%& of the ‘‘mass’’ of the cloud with its
radius R. Finite-size effects and randomness have been docu-
mented to generate realistic but sometimes spurious fractal
signatures "64–67#. This problem requires a special study
which is left for another work.

D. Relationship with the space-independent ETAS model

The spatial ETAS model reduces to the space-independent
ETAS model solved in Ref. "26# by integrating the dressed
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transform amounts to performing a simple integration over
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and show that they are identical.

A. The master equation of the ETAS model

The ETAS model can be rephrased by defining the rate
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of magnitude mi,m0 occurring at time t i and position r! i
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nitude m at a later time between t and t"dt and at point r! to
within an infinitesimal volume !dr!!. Note that the only dif-
ference with respect to the previous definition $2% is that we
now specify also the magnitude m of the daughter.
+mi→m(t%t i ,r!%r! i) is given by
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while
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With the parametrizations $3% and $6%, this reads
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$11%

Let us consider the case where there is an origin of time t
!0 at which we start recording the rate of earthquakes, as-
suming that a large earthquake has just occurred at t!0 and
somehow reset the clock. In the following calculation, we
will forget about the effect of events at times prior to t!0
and count all aftershocks that are created only by this main
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Let us call Nm(t ,r!)dtdmdr! the number of earthquakes
occurring between t and t!dt of magnitude between m and
m!dm inside a box of volume !dr!! centered at point r! .
Nm(t ,r!) is the solution of a self-consistency equation that
formalizes mathematically the following process: an earth-
quake may trigger aftershocks; these aftershocks may trigger
their own aftershocks, and so on. The rate of seismicity at a
given time t and position r! is the result of this cascade pro-
cess. The self-consistency equation that sums up this cascade
reads

Nm! t ,r! ""S! t ,r! ,m "!" d! r!"
m0

#

dm!

#"
0

t
d$%m!→m! t$$ ,r!$r!!"Nm!!$ ,r!!". !12"

The rate Nm(t ,r!) at time t and position r! is the sum over all
induced rates from all earthquakes of all possible magnitudes
that occurred at all previous times and locations propagated
to the present time t and to the position r! of observation by
the corresponding bare propagator. The induced rate of
events per earthquake that occurred at an earlier time $ and
position r!! is equal to %m!→m(t$$ ,r!$r!!). The source term
S(t ,r!) is the main shock plus the background seismicity, if
any. In absence of background seismicity, a main earthquake
that occurs at the origin of time t"0 at position r!"0! with
magnitude M gives

S! t ,r! ,m ""&! t "&!m$M "&!r! ", !13"

where & is the Dirac distribution. Other arbitrary source
functions can be chosen.
The source term corresponding to a single mainshock is

indeed the & function !13" rather than the direct Omori law
created by this mainshock in direct lineage. To see this, no-
tice that the direct Omori law is recovered from Eq. !12" by
replacing Nm!($ ,r!!) in the integral by S(t ,r! ,m) given by Eq.
!13". This shows that the difference between the renormal-
ized and the direct Omori laws comes from taking into ac-
count the secondary, tertiary, etc., cascades of aftershocks.
As we have seen, a key assumption of the ETAS model is

that the daughters born from a given mother have their mag-
nitude drawn independently of the magnitude of the mother
and of the process that give them birth, with a probability
given by the Gutenberg-Richter distribution !6". The conse-
quences of relaxing this hypothesis will be reported else-
where. Keeping this assumption, it can be shown '68( that,
for )*b/2, an ensemble of realizations will obey

Nm! t ,r! ""P!m "N! t ,r! " for t%0, !14"

which makes explicit the separation of the magnitude from
the time and space variables. N(t ,r!) is the number of events
at position r! at time t of any possible magnitude. Expression
!14" means that the Gutenberg-Richter distribution is pre-
served at all times. That Eq. !14" holds for the ETAS model

stems from the fact that the waiting time +(t) distribution
!4" and jump size ,(r!) distribution !5" are independent of
the magnitudes and that fluctuations in the seismicity rate are
not too wild for )*b/2. Note that, in a more complex model
in which time, space, and magnitudes are interdependent,
expression !14" would become a mean-field approximation,
in which the fluctuations of the rates induced by the fluctua-
tions of the realized magnitudes of the daughters factorize
from the process.
Putting Eq. !14" in Eq. !12", for t%0 when the source

term S(t ,r! ,m) is identically zero, one can simplify by P(m)
and obtain

N! t ,r! """ dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!", t%0,

!15"

where

%! t$$ ,r!$r!!"""
m0

#

dm!P!m!"%m!! t$$ ,r!$r!!".

!16"

Equation !15" is nothing but the expectation !or statistical
average, i.e., average over an ensemble of realizations" of
expression !8", with the definition N(t ,r!)-E'.(t),(r!)( .
Therefore, the master equation obtained here gives us only
the first moment of the space-time dynamics of seismicity. It
is not difficult to derive the equations for the variance and
covariance of the seismic rate as well as higher moments.
The value of the source term at t"0 that should be incor-

porated in Eq. !15" requires more care. Indeed, a naive treat-
ment would give a source term &(t)&(m$M )&(r!)/P(M )
obtained by simply dividing by P(m), expressed at m"M
due to the Dirac distribution &(m$M ). However, this
source term still depends on m via the Dirac distribution
&(m$M ) and is thus unsuitable as a source term of Eq. !15"
which is independent of m. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distribution
&(m$M ). The corresponding procedure has been described
in details in Ref. '26( and consists in applying the integral
operator /m0

# dm%̂(0 ,r!) to Eq. !12", where %̂(0 ,r!) is the
Laplace transform with respect to the time variable of
%(t ,r!). In this way, the Dirac distribution &(m$M ) is regu-
larized. Identifying with the results of Ref. '26(, we obtain
that N(t ,r!) is the solution of Eq. !15" with a source term

SM! t ,r! ""&!r "&! t "1!M "/n , !17"

where 1(M ) is defined in Eq. !3" and n is given by Eq. !7".
Thus, the complete master equation for the number N(t ,r!) of
events at position r! at time t of any possible magnitude is
solution of

N! t ,r! ""SM! t ,r! "!" dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!",

t%0, !18"
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source	term	(mainshock	must	occur	at	t = 0)

convolution
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direct Omori law

renormalized Omori law

(17)
# of event  by cascade process



assumption : daughter’s magnitude is independent of its mother
(GR preserved all time. It is adequate only if 𝛼 ≤ 𝑏/2	 ) 

𝑁W(𝑡, 𝑟) = 𝑃(𝑚)𝑁(𝑡, 𝑟)												for	𝑡 > 0
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Let us call Nm(t ,r!)dtdmdr! the number of earthquakes
occurring between t and t!dt of magnitude between m and
m!dm inside a box of volume !dr!! centered at point r! .
Nm(t ,r!) is the solution of a self-consistency equation that
formalizes mathematically the following process: an earth-
quake may trigger aftershocks; these aftershocks may trigger
their own aftershocks, and so on. The rate of seismicity at a
given time t and position r! is the result of this cascade pro-
cess. The self-consistency equation that sums up this cascade
reads

Nm! t ,r! ""S! t ,r! ,m "!" d! r!"
m0

#

dm!

#"
0

t
d$%m!→m! t$$ ,r!$r!!"Nm!!$ ,r!!". !12"

The rate Nm(t ,r!) at time t and position r! is the sum over all
induced rates from all earthquakes of all possible magnitudes
that occurred at all previous times and locations propagated
to the present time t and to the position r! of observation by
the corresponding bare propagator. The induced rate of
events per earthquake that occurred at an earlier time $ and
position r!! is equal to %m!→m(t$$ ,r!$r!!). The source term
S(t ,r!) is the main shock plus the background seismicity, if
any. In absence of background seismicity, a main earthquake
that occurs at the origin of time t"0 at position r!"0! with
magnitude M gives

S! t ,r! ,m ""&! t "&!m$M "&!r! ", !13"

where & is the Dirac distribution. Other arbitrary source
functions can be chosen.
The source term corresponding to a single mainshock is

indeed the & function !13" rather than the direct Omori law
created by this mainshock in direct lineage. To see this, no-
tice that the direct Omori law is recovered from Eq. !12" by
replacing Nm!($ ,r!!) in the integral by S(t ,r! ,m) given by Eq.
!13". This shows that the difference between the renormal-
ized and the direct Omori laws comes from taking into ac-
count the secondary, tertiary, etc., cascades of aftershocks.
As we have seen, a key assumption of the ETAS model is

that the daughters born from a given mother have their mag-
nitude drawn independently of the magnitude of the mother
and of the process that give them birth, with a probability
given by the Gutenberg-Richter distribution !6". The conse-
quences of relaxing this hypothesis will be reported else-
where. Keeping this assumption, it can be shown '68( that,
for )*b/2, an ensemble of realizations will obey

Nm! t ,r! ""P!m "N! t ,r! " for t%0, !14"

which makes explicit the separation of the magnitude from
the time and space variables. N(t ,r!) is the number of events
at position r! at time t of any possible magnitude. Expression
!14" means that the Gutenberg-Richter distribution is pre-
served at all times. That Eq. !14" holds for the ETAS model

stems from the fact that the waiting time +(t) distribution
!4" and jump size ,(r!) distribution !5" are independent of
the magnitudes and that fluctuations in the seismicity rate are
not too wild for )*b/2. Note that, in a more complex model
in which time, space, and magnitudes are interdependent,
expression !14" would become a mean-field approximation,
in which the fluctuations of the rates induced by the fluctua-
tions of the realized magnitudes of the daughters factorize
from the process.
Putting Eq. !14" in Eq. !12", for t%0 when the source

term S(t ,r! ,m) is identically zero, one can simplify by P(m)
and obtain

N! t ,r! """ dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!", t%0,

!15"

where

%! t$$ ,r!$r!!"""
m0

#

dm!P!m!"%m!! t$$ ,r!$r!!".

!16"

Equation !15" is nothing but the expectation !or statistical
average, i.e., average over an ensemble of realizations" of
expression !8", with the definition N(t ,r!)-E'.(t),(r!)( .
Therefore, the master equation obtained here gives us only
the first moment of the space-time dynamics of seismicity. It
is not difficult to derive the equations for the variance and
covariance of the seismic rate as well as higher moments.
The value of the source term at t"0 that should be incor-

porated in Eq. !15" requires more care. Indeed, a naive treat-
ment would give a source term &(t)&(m$M )&(r!)/P(M )
obtained by simply dividing by P(m), expressed at m"M
due to the Dirac distribution &(m$M ). However, this
source term still depends on m via the Dirac distribution
&(m$M ) and is thus unsuitable as a source term of Eq. !15"
which is independent of m. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distribution
&(m$M ). The corresponding procedure has been described
in details in Ref. '26( and consists in applying the integral
operator /m0

# dm%̂(0 ,r!) to Eq. !12", where %̂(0 ,r!) is the
Laplace transform with respect to the time variable of
%(t ,r!). In this way, the Dirac distribution &(m$M ) is regu-
larized. Identifying with the results of Ref. '26(, we obtain
that N(t ,r!) is the solution of Eq. !15" with a source term

SM! t ,r! ""&!r "&! t "1!M "/n , !17"

where 1(M ) is defined in Eq. !3" and n is given by Eq. !7".
Thus, the complete master equation for the number N(t ,r!) of
events at position r! at time t of any possible magnitude is
solution of

N! t ,r! ""SM! t ,r! "!" dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!",

t%0, !18"
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Master Equation of ETAS = renormalized Omori’s law

Let us call Nm(t ,r!)dtdmdr! the number of earthquakes
occurring between t and t!dt of magnitude between m and
m!dm inside a box of volume !dr!! centered at point r! .
Nm(t ,r!) is the solution of a self-consistency equation that
formalizes mathematically the following process: an earth-
quake may trigger aftershocks; these aftershocks may trigger
their own aftershocks, and so on. The rate of seismicity at a
given time t and position r! is the result of this cascade pro-
cess. The self-consistency equation that sums up this cascade
reads

Nm! t ,r! ""S! t ,r! ,m "!" d! r!"
m0

#

dm!

#"
0

t
d$%m!→m! t$$ ,r!$r!!"Nm!!$ ,r!!". !12"

The rate Nm(t ,r!) at time t and position r! is the sum over all
induced rates from all earthquakes of all possible magnitudes
that occurred at all previous times and locations propagated
to the present time t and to the position r! of observation by
the corresponding bare propagator. The induced rate of
events per earthquake that occurred at an earlier time $ and
position r!! is equal to %m!→m(t$$ ,r!$r!!). The source term
S(t ,r!) is the main shock plus the background seismicity, if
any. In absence of background seismicity, a main earthquake
that occurs at the origin of time t"0 at position r!"0! with
magnitude M gives

S! t ,r! ,m ""&! t "&!m$M "&!r! ", !13"

where & is the Dirac distribution. Other arbitrary source
functions can be chosen.
The source term corresponding to a single mainshock is

indeed the & function !13" rather than the direct Omori law
created by this mainshock in direct lineage. To see this, no-
tice that the direct Omori law is recovered from Eq. !12" by
replacing Nm!($ ,r!!) in the integral by S(t ,r! ,m) given by Eq.
!13". This shows that the difference between the renormal-
ized and the direct Omori laws comes from taking into ac-
count the secondary, tertiary, etc., cascades of aftershocks.
As we have seen, a key assumption of the ETAS model is

that the daughters born from a given mother have their mag-
nitude drawn independently of the magnitude of the mother
and of the process that give them birth, with a probability
given by the Gutenberg-Richter distribution !6". The conse-
quences of relaxing this hypothesis will be reported else-
where. Keeping this assumption, it can be shown '68( that,
for )*b/2, an ensemble of realizations will obey

Nm! t ,r! ""P!m "N! t ,r! " for t%0, !14"

which makes explicit the separation of the magnitude from
the time and space variables. N(t ,r!) is the number of events
at position r! at time t of any possible magnitude. Expression
!14" means that the Gutenberg-Richter distribution is pre-
served at all times. That Eq. !14" holds for the ETAS model

stems from the fact that the waiting time +(t) distribution
!4" and jump size ,(r!) distribution !5" are independent of
the magnitudes and that fluctuations in the seismicity rate are
not too wild for )*b/2. Note that, in a more complex model
in which time, space, and magnitudes are interdependent,
expression !14" would become a mean-field approximation,
in which the fluctuations of the rates induced by the fluctua-
tions of the realized magnitudes of the daughters factorize
from the process.
Putting Eq. !14" in Eq. !12", for t%0 when the source

term S(t ,r! ,m) is identically zero, one can simplify by P(m)
and obtain

N! t ,r! """ dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!", t%0,

!15"

where

%! t$$ ,r!$r!!"""
m0

#

dm!P!m!"%m!! t$$ ,r!$r!!".

!16"

Equation !15" is nothing but the expectation !or statistical
average, i.e., average over an ensemble of realizations" of
expression !8", with the definition N(t ,r!)-E'.(t),(r!)( .
Therefore, the master equation obtained here gives us only
the first moment of the space-time dynamics of seismicity. It
is not difficult to derive the equations for the variance and
covariance of the seismic rate as well as higher moments.
The value of the source term at t"0 that should be incor-

porated in Eq. !15" requires more care. Indeed, a naive treat-
ment would give a source term &(t)&(m$M )&(r!)/P(M )
obtained by simply dividing by P(m), expressed at m"M
due to the Dirac distribution &(m$M ). However, this
source term still depends on m via the Dirac distribution
&(m$M ) and is thus unsuitable as a source term of Eq. !15"
which is independent of m. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distribution
&(m$M ). The corresponding procedure has been described
in details in Ref. '26( and consists in applying the integral
operator /m0

# dm%̂(0 ,r!) to Eq. !12", where %̂(0 ,r!) is the
Laplace transform with respect to the time variable of
%(t ,r!). In this way, the Dirac distribution &(m$M ) is regu-
larized. Identifying with the results of Ref. '26(, we obtain
that N(t ,r!) is the solution of Eq. !15" with a source term

SM! t ,r! ""&!r "&! t "1!M "/n , !17"

where 1(M ) is defined in Eq. !3" and n is given by Eq. !7".
Thus, the complete master equation for the number N(t ,r!) of
events at position r! at time t of any possible magnitude is
solution of

N! t ,r! ""SM! t ,r! "!" dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!",

t%0, !18"
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𝑁 𝑡, 𝑟 = 𝐸 𝜆 𝑡 Φ 𝑟 ∶ Expectation	value 1st	moment

magnitude m vanishes

Let us call Nm(t ,r!)dtdmdr! the number of earthquakes
occurring between t and t!dt of magnitude between m and
m!dm inside a box of volume !dr!! centered at point r! .
Nm(t ,r!) is the solution of a self-consistency equation that
formalizes mathematically the following process: an earth-
quake may trigger aftershocks; these aftershocks may trigger
their own aftershocks, and so on. The rate of seismicity at a
given time t and position r! is the result of this cascade pro-
cess. The self-consistency equation that sums up this cascade
reads

Nm! t ,r! ""S! t ,r! ,m "!" d! r!"
m0

#

dm!

#"
0

t
d$%m!→m! t$$ ,r!$r!!"Nm!!$ ,r!!". !12"

The rate Nm(t ,r!) at time t and position r! is the sum over all
induced rates from all earthquakes of all possible magnitudes
that occurred at all previous times and locations propagated
to the present time t and to the position r! of observation by
the corresponding bare propagator. The induced rate of
events per earthquake that occurred at an earlier time $ and
position r!! is equal to %m!→m(t$$ ,r!$r!!). The source term
S(t ,r!) is the main shock plus the background seismicity, if
any. In absence of background seismicity, a main earthquake
that occurs at the origin of time t"0 at position r!"0! with
magnitude M gives

S! t ,r! ,m ""&! t "&!m$M "&!r! ", !13"

where & is the Dirac distribution. Other arbitrary source
functions can be chosen.
The source term corresponding to a single mainshock is

indeed the & function !13" rather than the direct Omori law
created by this mainshock in direct lineage. To see this, no-
tice that the direct Omori law is recovered from Eq. !12" by
replacing Nm!($ ,r!!) in the integral by S(t ,r! ,m) given by Eq.
!13". This shows that the difference between the renormal-
ized and the direct Omori laws comes from taking into ac-
count the secondary, tertiary, etc., cascades of aftershocks.
As we have seen, a key assumption of the ETAS model is

that the daughters born from a given mother have their mag-
nitude drawn independently of the magnitude of the mother
and of the process that give them birth, with a probability
given by the Gutenberg-Richter distribution !6". The conse-
quences of relaxing this hypothesis will be reported else-
where. Keeping this assumption, it can be shown '68( that,
for )*b/2, an ensemble of realizations will obey

Nm! t ,r! ""P!m "N! t ,r! " for t%0, !14"

which makes explicit the separation of the magnitude from
the time and space variables. N(t ,r!) is the number of events
at position r! at time t of any possible magnitude. Expression
!14" means that the Gutenberg-Richter distribution is pre-
served at all times. That Eq. !14" holds for the ETAS model

stems from the fact that the waiting time +(t) distribution
!4" and jump size ,(r!) distribution !5" are independent of
the magnitudes and that fluctuations in the seismicity rate are
not too wild for )*b/2. Note that, in a more complex model
in which time, space, and magnitudes are interdependent,
expression !14" would become a mean-field approximation,
in which the fluctuations of the rates induced by the fluctua-
tions of the realized magnitudes of the daughters factorize
from the process.
Putting Eq. !14" in Eq. !12", for t%0 when the source

term S(t ,r! ,m) is identically zero, one can simplify by P(m)
and obtain

N! t ,r! """ dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!", t%0,

!15"

where

%! t$$ ,r!$r!!"""
m0

#

dm!P!m!"%m!! t$$ ,r!$r!!".

!16"

Equation !15" is nothing but the expectation !or statistical
average, i.e., average over an ensemble of realizations" of
expression !8", with the definition N(t ,r!)-E'.(t),(r!)( .
Therefore, the master equation obtained here gives us only
the first moment of the space-time dynamics of seismicity. It
is not difficult to derive the equations for the variance and
covariance of the seismic rate as well as higher moments.
The value of the source term at t"0 that should be incor-

porated in Eq. !15" requires more care. Indeed, a naive treat-
ment would give a source term &(t)&(m$M )&(r!)/P(M )
obtained by simply dividing by P(m), expressed at m"M
due to the Dirac distribution &(m$M ). However, this
source term still depends on m via the Dirac distribution
&(m$M ) and is thus unsuitable as a source term of Eq. !15"
which is independent of m. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distribution
&(m$M ). The corresponding procedure has been described
in details in Ref. '26( and consists in applying the integral
operator /m0

# dm%̂(0 ,r!) to Eq. !12", where %̂(0 ,r!) is the
Laplace transform with respect to the time variable of
%(t ,r!). In this way, the Dirac distribution &(m$M ) is regu-
larized. Identifying with the results of Ref. '26(, we obtain
that N(t ,r!) is the solution of Eq. !15" with a source term

SM! t ,r! ""&!r "&! t "1!M "/n , !17"

where 1(M ) is defined in Eq. !3" and n is given by Eq. !7".
Thus, the complete master equation for the number N(t ,r!) of
events at position r! at time t of any possible magnitude is
solution of

N! t ,r! ""SM! t ,r! "!" dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!",

t%0, !18"

A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E 66, 061104 !2002"

061104-8

(17)



Continuous time random walk model (Montroll & Weiss, 1965)

• generalization of naïve Random Walk model
continuous distribution 𝜙(𝑟, 𝑡) of spatial step (jump length) and time step 
(wating time)

• master equation of CTRW is identical to ETAS

A) N(t, r) : PDF for the random walker to Just arrive at r at t.
B) Se(t, r) : initial condition of random walk, 
C) integral on (18) denote superposition of all possible paths just having 

arrived at r at t, weighted by a transfer function 𝜙

• Therefore we can borrow the deep knowledge of CTRW for the 
understanding Earthquake clustering.
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Let us call Nm(t ,r!)dtdmdr! the number of earthquakes
occurring between t and t!dt of magnitude between m and
m!dm inside a box of volume !dr!! centered at point r! .
Nm(t ,r!) is the solution of a self-consistency equation that
formalizes mathematically the following process: an earth-
quake may trigger aftershocks; these aftershocks may trigger
their own aftershocks, and so on. The rate of seismicity at a
given time t and position r! is the result of this cascade pro-
cess. The self-consistency equation that sums up this cascade
reads

Nm! t ,r! ""S! t ,r! ,m "!" d! r!"
m0

#

dm!

#"
0

t
d$%m!→m! t$$ ,r!$r!!"Nm!!$ ,r!!". !12"

The rate Nm(t ,r!) at time t and position r! is the sum over all
induced rates from all earthquakes of all possible magnitudes
that occurred at all previous times and locations propagated
to the present time t and to the position r! of observation by
the corresponding bare propagator. The induced rate of
events per earthquake that occurred at an earlier time $ and
position r!! is equal to %m!→m(t$$ ,r!$r!!). The source term
S(t ,r!) is the main shock plus the background seismicity, if
any. In absence of background seismicity, a main earthquake
that occurs at the origin of time t"0 at position r!"0! with
magnitude M gives

S! t ,r! ,m ""&! t "&!m$M "&!r! ", !13"

where & is the Dirac distribution. Other arbitrary source
functions can be chosen.
The source term corresponding to a single mainshock is

indeed the & function !13" rather than the direct Omori law
created by this mainshock in direct lineage. To see this, no-
tice that the direct Omori law is recovered from Eq. !12" by
replacing Nm!($ ,r!!) in the integral by S(t ,r! ,m) given by Eq.
!13". This shows that the difference between the renormal-
ized and the direct Omori laws comes from taking into ac-
count the secondary, tertiary, etc., cascades of aftershocks.
As we have seen, a key assumption of the ETAS model is

that the daughters born from a given mother have their mag-
nitude drawn independently of the magnitude of the mother
and of the process that give them birth, with a probability
given by the Gutenberg-Richter distribution !6". The conse-
quences of relaxing this hypothesis will be reported else-
where. Keeping this assumption, it can be shown '68( that,
for )*b/2, an ensemble of realizations will obey

Nm! t ,r! ""P!m "N! t ,r! " for t%0, !14"

which makes explicit the separation of the magnitude from
the time and space variables. N(t ,r!) is the number of events
at position r! at time t of any possible magnitude. Expression
!14" means that the Gutenberg-Richter distribution is pre-
served at all times. That Eq. !14" holds for the ETAS model

stems from the fact that the waiting time +(t) distribution
!4" and jump size ,(r!) distribution !5" are independent of
the magnitudes and that fluctuations in the seismicity rate are
not too wild for )*b/2. Note that, in a more complex model
in which time, space, and magnitudes are interdependent,
expression !14" would become a mean-field approximation,
in which the fluctuations of the rates induced by the fluctua-
tions of the realized magnitudes of the daughters factorize
from the process.
Putting Eq. !14" in Eq. !12", for t%0 when the source

term S(t ,r! ,m) is identically zero, one can simplify by P(m)
and obtain

N! t ,r! """ dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!", t%0,

!15"

where

%! t$$ ,r!$r!!"""
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!16"

Equation !15" is nothing but the expectation !or statistical
average, i.e., average over an ensemble of realizations" of
expression !8", with the definition N(t ,r!)-E'.(t),(r!)( .
Therefore, the master equation obtained here gives us only
the first moment of the space-time dynamics of seismicity. It
is not difficult to derive the equations for the variance and
covariance of the seismic rate as well as higher moments.
The value of the source term at t"0 that should be incor-

porated in Eq. !15" requires more care. Indeed, a naive treat-
ment would give a source term &(t)&(m$M )&(r!)/P(M )
obtained by simply dividing by P(m), expressed at m"M
due to the Dirac distribution &(m$M ). However, this
source term still depends on m via the Dirac distribution
&(m$M ) and is thus unsuitable as a source term of Eq. !15"
which is independent of m. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distribution
&(m$M ). The corresponding procedure has been described
in details in Ref. '26( and consists in applying the integral
operator /m0

# dm%̂(0 ,r!) to Eq. !12", where %̂(0 ,r!) is the
Laplace transform with respect to the time variable of
%(t ,r!). In this way, the Dirac distribution &(m$M ) is regu-
larized. Identifying with the results of Ref. '26(, we obtain
that N(t ,r!) is the solution of Eq. !15" with a source term

SM! t ,r! ""&!r "&! t "1!M "/n , !17"

where 1(M ) is defined in Eq. !3" and n is given by Eq. !7".
Thus, the complete master equation for the number N(t ,r!) of
events at position r! at time t of any possible magnitude is
solution of

N! t ,r! ""SM! t ,r! "!" dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!",

t%0, !18"
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• N and W
𝑁(𝑡, 𝑟) : PDF of just arriving at position r at time t
𝑊(𝑡, 𝑟) : PDF of being at position r at time t

• using Laplace-Fourier transform

• CTRW models transport phenomena in heterogeneous media. considering 
earthquake as transport of stress in heterogeneous crust, correspondence between 
ETAS and CTRW is natural ?
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N(t ,r!) is the ‘‘dressed’’ or ‘‘renormalized’’ propagator, ob-
tained by summing the bare Omori propagator over all pos-
sible aftershock cascades. N(t ,r!) can also be called the
renormalized Omori law !25".
The essential assumption used to derive Eq. #12$ is that

the fluctuations of the earthquake magnitudes in a given se-
quence can be considered to be decoupled from those of the
seismic rate. This approximation can be shown to be valid
for %&b/2 !68", for which the random variable '(mi) has a
finite variance. In this case, any coupling between the fluc-
tuations of the earthquake energies and the instantaneous
seismic rate provides only subdominant corrections to Eq.
#12$. For %!b/2, the variance of '(mi) is mathematically
infinite or undefined as '(mi) is distributed according to a
power law with exponent b/%"2. In this case, the master
equation #12$ is not completely correct as an additional term
must be included to account for the effect of the dependence
between the fluctuations of earthquake magnitudes and the
instantaneous seismic rate. Our results are presented below
for %#0.5, which belongs to the first regime %&b/2. For
%!b/2, Ref. !68" has shown that the renormalization of the
bare propagator into the dressed propagator is weaker than
for %&b/2, all the more so as %→b . Preliminary numerical
simulations for %!b/2 shows that our results presented be-
low hold qualitatively but with a reduction of the observed
spatial diffusion exponent compared to the value predicted
from the master equation approach developed here. This re-
gime %!b/2 is probably relevant to the real seismicity
!43,45,46", even if a precise estimation of % is very difficult.

B. A master equation of the CTRW model

We now demonstrate that the self-consistent mean field
equation #18$ is identical to the master equation of a CTRW.
Random walks underlie many physical processes and are of-
ten the basis of first-order description of natural processes.
The CTRW model, which is a generalization of the naive
model of a random walker that jumps by $1 spatial step on
a discrete lattice at each time step, was introduced by Ref.
!57" and investigated by many other workers !69–73". The
CTRW considers a continuous distribution of spatial steps as
well as time steps #which can be seen either as waiting times
between steps or as durations of the steps$. The CTRW
model is thus based on the idea that the length of a given
jump, as well as the waiting time ( i#t i%t i%1 elapsing be-
tween two successive jumps are drawn from a joint probabil-
ity density function #PDF$ )(r! ,t), which is usually referred
to as the jump PDF. From a mathematical point of view, a
CTRW is a process subordinated to random walks under the
operational time defined by the process *t i+.
From )(r! ,t), the jump length PDF ,(r!)#-0

&.dt)(r! ,t)
and the waiting time PDF /(t)#-dr!)(r! ,t) can be deduced.
Thus, ,(r!)dr! produces the probability for a jump length in
the interval (r! ,r!&dr!) and /(t)dt the probability for a wait-
ing time in the interval (t ,t&dt). When the jump length and
waiting time are independent random variables, this corre-
sponds to the decoupled form )(r! ,t)#/(t),(r!). If both

are coupled, a jump of a certain length involves a time cost
or, vice versa in a given time span the walker can only travel
a maximum distance. With these definitions, a CTRW pro-
cess can be described through a master equation #see Refs.
!73–75" for a review and references therein$ which turns out
to be given by an equation that is identical to Eq. #18$.
This connection between the ETAS model of earthquakes

and a model of random walks provides an important advance
for the understanding of spatiotemporal earthquake pro-
cesses, as it allows one to borrow the deep knowledge accu-
mulated in past decades on random walks. In the same spirit,
polymer physics acquired its status as a fundamental physi-
cal problem from its previous status of an applied field of
research in chemistry when Flory, Edwards, de Gennes, des
Cloizeaux, and others showed how to formulate problems in
polymer physics in the language of random walks and how
to extract novel results. In the sequel of this paper, we use
this analogy to provide a wealth of predictions as well as
important questions for earthquake aftershocks.
In the context of the CTRW, we have the following cor-

respondence.
#a$ N(t ,r!) is the PDF for the random walker to just arrive

at position r! at time t.
#b$ The source term SM(t ,r!) given by Eq. #17$ denotes

the initial condition of the random walk, here chosen to be at
the origin of space at time t#0. The constant '(M )/n adds
the possibility via the parameter M to have more than one
initial walker at the origin.

#c$ In the CTRW context, the master equation #18$ states
that the PDF N(t ,r!) of just having arrived at position r! at
time t comes from all possible paths in number N(( ,r!!) hav-
ing crossed a position r!! at an earlier time ( , weighted by a
transfer or propagator function )(t%( ,r!%r!!) describing all
the possible steps of the random walker from (( ,r!!) to (t ,r!).
It is important to stress that N(t ,r!) defined above is dif-

ferent from the standard quantity W(t ,r!) usually studied in
random walk problems, defined as the probability to find the
random walk at position r! at time t. The relationship between
N(t ,r!) and W(t ,r!) is

W# t ,r! $#!
0

t
dt!"1%!

0

t%t!
dt"/# t"$#N# t!,r! $. #19$

The term 1%-0
t%t!dt"/(t") in bracket is the probability for

the walker not to jump in the time interval ! t!,t" and the
integral in the right-hand side of Eq. #19$ means that the
probability W(t ,r!) for the random walker to be at position r!
at time t is the sum over all possible scenarios in which the
walker just arrives at r! at an earlier time t! and then does not
jump until time t. In the context of earthquake aftershocks,
W(t ,r!) is the probability that an event at r! has occurred at a
time t!&t and that the whole system has remained quiescent
from t! to t.
In the Fourier-Laplace domain #see below$, expression

#19$ reads
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Ŵ!" ,k! #!
1"$̂!"#

"
N̂!" ,k! #. !20#

In general, the CTRW model models transport phenomena in
any heterogeneous media. It has, for instance, been used suc-
cessfully for describing the behavior of chemical species as
they migrate through porous media %76,77&. In insight, it is
rather natural that it can be applied to the ‘‘transport of
stress’’ through the heterogeneous crust and thus to the de-
scription of the anomalous diffusion of seismic activity.
Table I synthesizes the correspondence between the ETAS

and CTRW models and then draws its consequences.

C. Experimental verifications of the crossover between the two
power-law Omori decays in photoconductivity in

amorphous semiconductors and in fractal stream chemistry
using the correspondence between the ETAS and

CTRW models

The crossover from an Omori law 1/t1"' for t#t* to
1/t1$' for t%t* found in Refs. %25,26& with t* given by Eq.
!1# has actually a counterpart in the CTRW. This behavior
was first studied by Scher and Montroll %70& in a CTRW with
absorbing boundary condition to model photoconductivity in
amorphous semiconductors As2Se3 and an organic com-
pound finding '(0.5 and '!0.8, respectively. In a semicon-
ductor experiment, electric holes are injected near a positive
electrode and then transported to a negative electrode where
they are absorbed. The transient current follows exactly the
transition 1/t1"' for t#t* to 1/t1$' for t%t* found for

Omori’s law for earthquake aftershocks in the ETAS model.
In the semiconductor context, the finiteness of t* results
from the existence of a force applied to the holes while in the
ETAS model it results from a finite distance 1"n to the
critical point n!1 in the subcritical regime. When the force
goes to zero or n→1, t*→$) .
A similar transition has been recently proposed to model

long-term time series measurements of chloride, a natural
passive tracer, in rainfall and runoff in catchments %79&. The
quantity analogous to the dressed Omori propagator is the
effective travel time distribution h(t) which governs the glo-
bal lag time between injection of the tracer through rainfall
and outflow to the stream. h(t) has been shown to have a
power-law form h(t)*1/t1"m with m between "0.3 and 0.2
for different time series %80&. This variability may be due to
the transition between an exponent 1"' at short times to
1$' at long times %79&, where ' is the exponent of the bare
distribution of individual transition times.

D. General and formal solution of the spatial ETAS model

Let us solve Eq. !18# for the number N(t ,r!) of events at
position r! at time t of any possible magnitude. Recall that
N(t ,r!) can also be interpreted as the dressed Omori propa-
gator. Extending Ref. %26& to the spatial domain and also in
analogy with the standard approach to solve the CTRW, the
Laplace-in-time Fourier-in-space transform N̂(" ,k! ) of
N(t ,r!) is given by

TABLE I. Correspondence between the ETAS !epidemic-type aftershock sequence# and CTRW
!continuous-time random walk# models. ‘‘PDF’’ stands for probability density function.

ETAS CTRW

$(t) PDF for a ‘‘daughter’’ to be born at time t
from the mother that was born at time 0

PDF of waiting times

+(r!) PDF for a daughter to be triggered
at a distance r! from its mother

PDF of jump sizes

m Earthquake magnitude Tag associated with each jump

,(m) Number of daughters
per mother of magnitude m

Local branching ratio

n Average number of daughters created per mother
summed over all possible magnitudes

Control parameter of the random
walk survival !branching ratio#

n#1 Subcritical aftershock regime Subcritical ‘‘birth and death’’

n!1 Critical aftershock regime The standard CTRW

n%1 Supercritical exponentially
growing regime

Explosive regime of the
‘‘birth and death’’ CTRW

N(t ,r!) Number of events of any possible
magnitude at r! at time t

PDF of just having
arrived at r! at time t

W(t ,r!) PDF that an event at r! has occurred at a time t!-t PDF of being at r! at time t
and that no event occurred anywhere from t! to t
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Let us call Nm(t ,r!)dtdmdr! the number of earthquakes
occurring between t and t!dt of magnitude between m and
m!dm inside a box of volume !dr!! centered at point r! .
Nm(t ,r!) is the solution of a self-consistency equation that
formalizes mathematically the following process: an earth-
quake may trigger aftershocks; these aftershocks may trigger
their own aftershocks, and so on. The rate of seismicity at a
given time t and position r! is the result of this cascade pro-
cess. The self-consistency equation that sums up this cascade
reads

Nm! t ,r! ""S! t ,r! ,m "!" d! r!"
m0

#

dm!

#"
0

t
d$%m!→m! t$$ ,r!$r!!"Nm!!$ ,r!!". !12"

The rate Nm(t ,r!) at time t and position r! is the sum over all
induced rates from all earthquakes of all possible magnitudes
that occurred at all previous times and locations propagated
to the present time t and to the position r! of observation by
the corresponding bare propagator. The induced rate of
events per earthquake that occurred at an earlier time $ and
position r!! is equal to %m!→m(t$$ ,r!$r!!). The source term
S(t ,r!) is the main shock plus the background seismicity, if
any. In absence of background seismicity, a main earthquake
that occurs at the origin of time t"0 at position r!"0! with
magnitude M gives

S! t ,r! ,m ""&! t "&!m$M "&!r! ", !13"

where & is the Dirac distribution. Other arbitrary source
functions can be chosen.
The source term corresponding to a single mainshock is

indeed the & function !13" rather than the direct Omori law
created by this mainshock in direct lineage. To see this, no-
tice that the direct Omori law is recovered from Eq. !12" by
replacing Nm!($ ,r!!) in the integral by S(t ,r! ,m) given by Eq.
!13". This shows that the difference between the renormal-
ized and the direct Omori laws comes from taking into ac-
count the secondary, tertiary, etc., cascades of aftershocks.
As we have seen, a key assumption of the ETAS model is

that the daughters born from a given mother have their mag-
nitude drawn independently of the magnitude of the mother
and of the process that give them birth, with a probability
given by the Gutenberg-Richter distribution !6". The conse-
quences of relaxing this hypothesis will be reported else-
where. Keeping this assumption, it can be shown '68( that,
for )*b/2, an ensemble of realizations will obey

Nm! t ,r! ""P!m "N! t ,r! " for t%0, !14"

which makes explicit the separation of the magnitude from
the time and space variables. N(t ,r!) is the number of events
at position r! at time t of any possible magnitude. Expression
!14" means that the Gutenberg-Richter distribution is pre-
served at all times. That Eq. !14" holds for the ETAS model

stems from the fact that the waiting time +(t) distribution
!4" and jump size ,(r!) distribution !5" are independent of
the magnitudes and that fluctuations in the seismicity rate are
not too wild for )*b/2. Note that, in a more complex model
in which time, space, and magnitudes are interdependent,
expression !14" would become a mean-field approximation,
in which the fluctuations of the rates induced by the fluctua-
tions of the realized magnitudes of the daughters factorize
from the process.
Putting Eq. !14" in Eq. !12", for t%0 when the source

term S(t ,r! ,m) is identically zero, one can simplify by P(m)
and obtain

N! t ,r! """ dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!", t%0,

!15"

where

%! t$$ ,r!$r!!"""
m0

#

dm!P!m!"%m!! t$$ ,r!$r!!".

!16"

Equation !15" is nothing but the expectation !or statistical
average, i.e., average over an ensemble of realizations" of
expression !8", with the definition N(t ,r!)-E'.(t),(r!)( .
Therefore, the master equation obtained here gives us only
the first moment of the space-time dynamics of seismicity. It
is not difficult to derive the equations for the variance and
covariance of the seismic rate as well as higher moments.
The value of the source term at t"0 that should be incor-

porated in Eq. !15" requires more care. Indeed, a naive treat-
ment would give a source term &(t)&(m$M )&(r!)/P(M )
obtained by simply dividing by P(m), expressed at m"M
due to the Dirac distribution &(m$M ). However, this
source term still depends on m via the Dirac distribution
&(m$M ) and is thus unsuitable as a source term of Eq. !15"
which is independent of m. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distribution
&(m$M ). The corresponding procedure has been described
in details in Ref. '26( and consists in applying the integral
operator /m0

# dm%̂(0 ,r!) to Eq. !12", where %̂(0 ,r!) is the
Laplace transform with respect to the time variable of
%(t ,r!). In this way, the Dirac distribution &(m$M ) is regu-
larized. Identifying with the results of Ref. '26(, we obtain
that N(t ,r!) is the solution of Eq. !15" with a source term

SM! t ,r! ""&!r "&! t "1!M "/n , !17"

where 1(M ) is defined in Eq. !3" and n is given by Eq. !7".
Thus, the complete master equation for the number N(t ,r!) of
events at position r! at time t of any possible magnitude is
solution of

N! t ,r! ""SM! t ,r! "!" dr!!"
0

t
d$%! t$$ ,r!$r!!"N!$ ,r!!",

t%0, !18"
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact

DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E 66, 061104 !2002#

061104-11

(21) (20)

(18) (19)



summary : correspondence between ETAS and CTRW

2017/5/29 Seismogenesis Seminar 19

Ŵ!" ,k! #!
1"$̂!"#

"
N̂!" ,k! #. !20#

In general, the CTRW model models transport phenomena in
any heterogeneous media. It has, for instance, been used suc-
cessfully for describing the behavior of chemical species as
they migrate through porous media %76,77&. In insight, it is
rather natural that it can be applied to the ‘‘transport of
stress’’ through the heterogeneous crust and thus to the de-
scription of the anomalous diffusion of seismic activity.
Table I synthesizes the correspondence between the ETAS

and CTRW models and then draws its consequences.

C. Experimental verifications of the crossover between the two
power-law Omori decays in photoconductivity in

amorphous semiconductors and in fractal stream chemistry
using the correspondence between the ETAS and

CTRW models

The crossover from an Omori law 1/t1"' for t#t* to
1/t1$' for t%t* found in Refs. %25,26& with t* given by Eq.
!1# has actually a counterpart in the CTRW. This behavior
was first studied by Scher and Montroll %70& in a CTRW with
absorbing boundary condition to model photoconductivity in
amorphous semiconductors As2Se3 and an organic com-
pound finding '(0.5 and '!0.8, respectively. In a semicon-
ductor experiment, electric holes are injected near a positive
electrode and then transported to a negative electrode where
they are absorbed. The transient current follows exactly the
transition 1/t1"' for t#t* to 1/t1$' for t%t* found for

Omori’s law for earthquake aftershocks in the ETAS model.
In the semiconductor context, the finiteness of t* results
from the existence of a force applied to the holes while in the
ETAS model it results from a finite distance 1"n to the
critical point n!1 in the subcritical regime. When the force
goes to zero or n→1, t*→$) .
A similar transition has been recently proposed to model

long-term time series measurements of chloride, a natural
passive tracer, in rainfall and runoff in catchments %79&. The
quantity analogous to the dressed Omori propagator is the
effective travel time distribution h(t) which governs the glo-
bal lag time between injection of the tracer through rainfall
and outflow to the stream. h(t) has been shown to have a
power-law form h(t)*1/t1"m with m between "0.3 and 0.2
for different time series %80&. This variability may be due to
the transition between an exponent 1"' at short times to
1$' at long times %79&, where ' is the exponent of the bare
distribution of individual transition times.

D. General and formal solution of the spatial ETAS model

Let us solve Eq. !18# for the number N(t ,r!) of events at
position r! at time t of any possible magnitude. Recall that
N(t ,r!) can also be interpreted as the dressed Omori propa-
gator. Extending Ref. %26& to the spatial domain and also in
analogy with the standard approach to solve the CTRW, the
Laplace-in-time Fourier-in-space transform N̂(" ,k! ) of
N(t ,r!) is given by

TABLE I. Correspondence between the ETAS !epidemic-type aftershock sequence# and CTRW
!continuous-time random walk# models. ‘‘PDF’’ stands for probability density function.

ETAS CTRW

$(t) PDF for a ‘‘daughter’’ to be born at time t
from the mother that was born at time 0

PDF of waiting times

+(r!) PDF for a daughter to be triggered
at a distance r! from its mother

PDF of jump sizes

m Earthquake magnitude Tag associated with each jump

,(m) Number of daughters
per mother of magnitude m

Local branching ratio

n Average number of daughters created per mother
summed over all possible magnitudes

Control parameter of the random
walk survival !branching ratio#

n#1 Subcritical aftershock regime Subcritical ‘‘birth and death’’

n!1 Critical aftershock regime The standard CTRW

n%1 Supercritical exponentially
growing regime

Explosive regime of the
‘‘birth and death’’ CTRW

N(t ,r!) Number of events of any possible
magnitude at r! at time t

PDF of just having
arrived at r! at time t

W(t ,r!) PDF that an event at r! has occurred at a time t!-t PDF of being at r! at time t
and that no event occurred anywhere from t! to t
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4. critical regime n = 1

Derive the joint probability distribution N(t,r)
Calculate the average distance between mainshock and its aftershock R as 

a  power law function of elapsed time. (R~t^H)
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・for 𝜇 > 2, 𝑟g = 𝜎g	(finite)

Φi 𝑘 = 1 − 𝜎g𝑘g + 𝑂 𝑘l with	𝑜 > 2

・for 0 < 𝜇 ≤ 2, 𝑟g =	infinite (so-called Levy-flight)

Φi 𝑘 = 1 − 𝜎o𝑘o + 𝑂 𝑘l with	𝑜 > 𝜇

N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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Φ 𝑟 =
𝜇

𝑑 𝑟/𝑑 + 1 pqo (5)

(23)

(24)

(25)
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chosen to account for the fact that large earthquakes have
many more triggered events than have small earthquakes.
Specifically, we take

!"mi#!K10$(mi"m0), "3#

which, as we said earlier, is justified by the power-law de-
pendence of the volume of stress perturbation as a function
of the earthquake size. $ quantifies how fast the average
number of daughters per mother increases with the magni-
tude of the mother.

"2# %(t"t i) is a normalized waiting time distribution giv-
ing the rate of daughters born at time t"t i after the mother.
The normalization condition reads &0

#'dt%(t)!1.
%(t"t i)dt can thus be interpreted as the probability for a
daughter to be born between t and t#dt from the mother that
was born at time t i . %(t"t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

%" t #!
(c(

" t#c #1#(
H" t #, "4#

where ($0 and H(t) is the Heaviside function.
"3# )(r!"r! i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying the
probability for a daughter to be triggered at a distance
!r!"r! i! from the mother. Specifically, we take

)"r! #!
*

d" !r!!
d #1 # 1#* , "5#

which has the form of an "isotropic# elastic Green function
dependence describing the stress transfer in an elastic upper
crust. The exponent * is left adjustable to account for het-
erogeneity and the possible complex modes of stress trans-
fers. The normalization condition reads &dr!)(r!)!1, where
the integral is carried out over the whole space.
The physical justification for this decoupled model "2# in

which +mi
(t"t i ,r!"r! i) is the product of three independent

distributions is that elastic waves propagate at kilometers per
second and thus almost instantaneously reset the stress field
after a large main shock. In other words, there is a well-
defined separation of time scales between the time of propa-
gation of seismic waves "seconds to minutes# which control
the convergence to a new mechanical equilibrium after the
main shock and the time scales involved in aftershock se-
quences "hours, days, months, or many years#. The spatial
dependence in Eq. "2# reflects the stress redistribution. This
new stress field then relaxes slowly and more or less inde-
pendently from point to point leading to the local Omori law
%(t"t i). Notwithstanding this argument, the decoupling in
Eq. "2# between the local responses in magnitudes, space,
and time is mostly performed because of its simplicity. It
constitutes an approximation that should be checked and re-
laxed in future studies.

We assume a distribution P(m) of earthquake sizes ex-
pressed in magnitudes m which follows the Gutenberg-
Richter distribution

P"m #!bln"10#10"b(m"m0), "6#

with a b value usually close to 1. m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average number n of
daughter earthquakes created per mother event, summed
over all possible magnitudes. As we shall see, it is also natu-
ral to call it the ‘‘branching ratio.’’ To see this, consider the
integral of the seismic rate +mi

(t"t i ,r!"r! i) induced by one
earthquake over all times after t i , over all spatial positions
and over all magnitudes mi,m0, which must give, by defi-
nition, the average number n of direct "or primary# daughter
earthquakes created per mother event independently of its
magnitude. For $%b , and using Eqs. "2#, "3#, and "6#, it is
exactly given by

n-$ dr!$
t i

#'

dt$
m0

#'

dmiP"mi#+mi" t"t i ,r!"r! i#

!$
m0

#'

dmiP"mi#!"mi#!
Kb
b"$

, "7#

since the two integrals over time and space contribute each a
factor 1 by the normalization of % and ) . This result "7# is
identical to that found in absence of spatial dependence of
+mi

(t"t i) with respect to r!"r! i due to the factorization of
the rate ! , time % , and space ) dependences .26/. The
branching ratio has also been evaluated in the case where the
magnitude distribution follows a gamma distribution .54/.
We stress again that n is an average quantity that does not

reflect the large fluctuations in the number of aftershocks
from event to event. Indeed, large events with magnitudes M
produce, in general, many more aftershocks than small
events with magnitude m%M , simply because !(M )
&!(m) if M$m .see the exponential dependence "3# of
!(m) on the magnitude m].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using
the algorithm described in Refs. .59,52/. Starting with a large
event of magnitude M at time t!0, events are then simu-
lated sequentially. At any given time t, we calculate the con-
ditional seismic rate 0(t) defined by

0" t #!1
t i2t

K10$(mi"m0)
(c(

" t"t i#c #1#(
, "8#

where K!n(b"$)/b , and t i and mi are the times and mag-
nitudes of all preceding events that occurred at time t i2t .
Note that we use the bare propagator because the sum in Eq.
"8# is performed exhaustively on the complete catalog of past
events. The time of the following event is then determined
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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𝑐r = 𝑐 Γ 1 − 𝜃
p
t

for 𝜃 < 1, 

(4)

(26)
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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・case n=1

・case n<1

Analyzed in detail below

𝑡 < 𝑡∗and		𝑟 < 𝑟∗ Same expression as for n=1

N can be factorized  : No diffusion

The corresponding N(t ,r!) is obtained from Eq. !20". The
Laplace transform of the exponential distribution !46" is
#̂($)!%/($"%). We thus get

N̂!$ ,k! "!!$"%"Ŵ!$ ,k! ", !49"

and thus

N! t ,r! "!
&W! t ,r! "

&t "%W! t ,r! ". !50"

Expression !50" together with Eq. !48" predicts a diffusion
law r'tH with H!1/( which is in good agreement with our
simulations. At large times !r!!#(%t)1/(, N(t ,r!))%W(t ,r!)
'1/t1/(, giving an apparent local Omori exponent *!1
$1/( . This offers a different mechanism for generating
Omori’s law for aftershocks from purely exponential local
relaxation but with a heavy distribution of jump sizes. This
power-law decay should be observed only at a fixed distance
r or over a limited domain from the mainshock in the regime
of large times.
Integrating over the whole space, +dr!W(t ,r!)!1, which

gives N(t)!,(t)"% equal to a constant seismic rate. This
results from an initial mainshock at t!0 leading to the cas-
cade of aftershocks adjusting delicately to this constant rate
for the critical value n!1 of the branching parameter. In the
subcritical regime n%1, the Omori law integrated over
space gives instead N(t)-exp.$(1$n)%t/, showing that the
characteristic decay time 1/(1$n)% of the dressed Omori
propagator N(t) becomes much larger !much longer
memory" that the decay time 1/% of the bare Omori propa-
gator.
For (&2, we recover the standard diffusion correspond-

ing to *&1 and (&2 discussed in Sec. IVB.

E. Long waiting times „!Ë1… and long jump sizes
„Lévy flight regime for µÏ2…

Putting the leading terms of the expansions of 0̂(k! ) and
of #̂($) in Eq. !21" gives

N̂!$ ,k! "! ŜM!$ ,k! "
1

!$c!"*"!1k "(
. !51"

The corresponding Ŵ($ ,k! ) is given by

Ŵ!$ ,k! "! ŜM!$ ,k! "
!$"*$1c!*

!$c!"*"!1k "(
. !52"

Equation !52" has been studied extensively in the context of
the CTRW model as a long wavelength !k! !→0 and long time
$→0 approximation to investigate the long time behavior of
the CTRW. Kotulski .86/ has developed a rigorous approach,
based on limit theorems, to classify the asymptotic behaviors
of different type of CTRWs and justifies the approximation
!52" for the long time behavior. Barkai .87/ has studied the
quality of the long wavelength !k! !→0 and long time $→0

approximation !52" by solving the exact CTRW problem for
the case when the waiting time distribution #(t) is a one-
sided stable Lévy law of index * with the same tail as Eq. !4"
and the distribution 0(r!) of jumps is a symmetric stable
Lévy of index ( with the same tail as Eq. !5". Their Laplace
and Fourier transforms that appear in the denominator of Eq.
!22" are, respectively, #̂($)!exp.$$*/ and 0̂(k! )!exp
.$!k!!(/2/ . Note that the long wavelength !k! !→0 and long
time $→0 approximation gives 1$exp.$(c!$)*/exp
.$!1k!!(/!(c!$)*"!1k!!(, which recovers Eq. !51". By com-
paring the exact solution of Eq. !21" for #(t) and 0(r!) of
the above Lévy form with that of the long wavelength !k! !
→0 and long time $→0 approximation !52", Barkai .87/
finds that certain solutions of Eq. !52" diverge on the origin,
a behavior not found for the corresponding solutions of Eq.
!21". In addition, certain solutions of the full equation !21"
converge only very slowly for (%1 to the solutions of the
long-time approximation !52". These results validate our use
of the asymptotic long time behavior with respect to the
scaling laws but provide a note of caution if one needs more
precise nonasymptotic information. In this case, such infor-
mation can be obtained by a suitable analysis of the full
equation !21".
Using power counting, expression !52" predicts a diffu-

sion process !45" with exponent

H!
*

(
. !53"

This prediction is checked by numerical simulation of the
ETAS model in the critical regime n!1, with *!0.2, (
!0.9, shown in Fig. 6. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock indeed increases according to Eq. !45"
with an exponent H in very good agreement with the predic-
tion H!*/(!0.2. As the form of the denominator in Eq.
!52" is independent of the space dimension, the prediction
!53" is valid in any space dimension.
The natural variable for the expansions given below al-

lowing to compute N(t ,r!) is

z!
Dt*/(

!r!!
, !54"

where D!1/c!*/( and c!!c.2(1$*)/1/*.

1. z expansion of the solution

W(t ,r!) can be obtained as the following sum .Eq. !5.10"
of Ref. .88//

W! t ,r! "!
1

3!r!! 4
m!0

"5

!$1 "mzm(
2!m("1 "

2!m*"1 "
cos"32 !m("1 "# .

!55"

Applying Eq. !32" to Eq. !55" term by term in the sum, we
get
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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otherwise

N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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(51)

(21) (27)

(29)

(31)

ary aftershocks which themselves may trigger tertiary after-
shocks and so on. They found that the global aftershock rate
decays according to an Omori law with an exponent
p!1"!#1, up to a characteristic time "25,26#

t*!c! n$%1"!&

"1"n" # 1/!, %1&

and then recovers the local Omori exponent p!1$! for
time larger than t*. Helmstetter and Sornette "26# extended
their analysis to the general ETAS model with magnitude
dependence, and considered both the subcritical and the su-
percritical regime, but still restricted the analysis to the tem-
poral distribution of the seismicity, without spatial depen-
dence. In the subcritical regime, they recovered the crossover
found by Sornette and Sornette "25#. In addition, Helmstetter
and Sornette "26# give the explicit mathematical formula for
the gradual transition between the Omori law with expo-
nent p!1"! for t%t* to the Omori law with exponent
p!1$! for t&t*. This smooth transition can be observed
in Fig. 2 on the line calculated for t*!109 days with n
#1. t* can thus be viewed as the time where the apparent
exponent p of the Omori law is approximately in between the
two asymptotic values 1"! and 1$! . A more rigorous
mathematical definition "26# is that t* is the characteristic
time scale such that 't* is the dimensionless variable of the
Laplace transform %with variable ') of the seismicity rate.
In the supercritical regime, Helmstetter and Sornette "26#

found a novel transition between a power-law decay with
exponent p!1"! at early times, similar to the subcritical
regime, to an exponential increase of the seismicity at large
times. The regime where ('b or equivalently 2(/3'B has
been found to lead to a new kind of critical stochastic finite-
time-singularity "27#, relying on the interplay between long-
memory and extreme fluctuations. Recall that the number of
aftershocks per earthquake increases as a power law )E2(/3

of the energy released by the mainshock whereas the number
of earthquakes of energy E decreases as the Gutenberg-
Richter law )1/E1$B. Intuitively, when 2(/3'B , the in-
crease in the rate of creation of aftershocks with the main-
shock energy more than compensates the decrease of the
probability to get a large mainshock when the mainshock
energy increases. This theory based solely on the ETAS
model has been found to account for the main observations
%power-law acceleration and discrete scale invariant struc-
ture& of critical rupture of heterogeneous materials, of the
largest sequence of starquakes ever attributed to a neutron
star as well as of some earthquake sequences "27#.
In the sequel, we extend the analytical study of the tem-

poral ETAS model "25–27# to the spatio-temporal domain.
To model the spatial distribution of aftershocks, we assume
that the distance between a mainshock and each of its direct
aftershock is drawn from a given distribution, independently
of the magnitude of the mainshock and of the delay between
the mainshock and its aftershocks. For illustration, but with-
out loss of generality, for the mapping to the continuous time
random walk %CTRW& model discussed later, we shall take a
power-law distribution of distances between earthquakes. We
take the simplest and most parsimonious hypothesis that

space, time, and magnitude are decoupled in the earthquake
propagator. Our first result is to establish a correspondence
between the ETAS model and the CTRW model, first intro-
duced by Montroll and Weiss "57# and used to model many
physical processes. We then build on this analogy to derive
the joint probability distribution of the times and locations of
aftershocks. We show analytically that, for sufficiently short
times t#t*, the average distance between a mainshock and
its aftershock increases subdiffusively as R*tH, where the
exponent H depends on the local Omori exponent 1$! and
on the distribution of the distances between an earthquake
and its aftershocks. We also demonstrate that the local Omori
law is not universal, but varies as a function of the distance
from the mainshock. Due to the diffusion of aftershocks with
time, the decay of aftershock is faster close to the mainshock
than at large distances. These nontrivial space-time couplings
occur notwithstanding the decoupling between space, time,
and magnitude in the ‘‘bare’’ propagator, and are due to the
existence of cascades of aftershocks.
A recent work of Krishnamurthy et al. "58# substantiates

the general modeling strategy used here of representing the
space-time dynamics of earthquakes by an effective stochas-
tic process %the ETAS model& entirely defined by two expo-
nents "corresponding to our + and H(! ,+) defined below#,
where + is the exponent of the power-law distribution of
jumps between successive active sites and H is the %sub-&
diffusion exponent. Indeed, Krishnamurthy et al. "58# show
that the Bak and Sneppen model and the Sneppen model of
extremal dynamics %corresponding to a certain class of self-
organized critical behavior "12#& can be completely charac-
terized by a suitable stochastic process called ‘‘linear frac-
tional stable motion.’’ Beyond recovering the scaling
exponents of this model, the stochastic process strategy pre-
dicts the conditional probabilities of successive activations at
different sites and thus offers important insights. We note
that this approach with the linear fractional stable motion is
extremely close in spirit as well as in form to our approach
mapping the ETAS model to the CTRW model. The ETAS
model can thus be taken to represent an effective stochastic
process of the complex self-organization of seismicity.

II. THE ETAS MODEL

A. Definitions and specific parametrization of the ETAS model

We assume that a given event %the ‘‘mother’’& of magni-
tude mi occurring at time t i and position r! i gives birth to
other events %‘‘daughters’’& of any possible magnitude cho-
sen with some independent Gutenberg-Richter distribution at
a later time between t and t$dt and at point r!(d! r to within
dr! at the rate

,mi% t"t i ,r!"r! i&!-%mi&.% t"t i&/%r!"r! i&. %2&

We will refer to ,mi
(t"t i ,r!"r! i) both as the seismic rate

induced by a single mother or as the ‘‘bare propagator.’’ It is
the product of three independent contributions.

%1& -(mi) gives the number of daughters born from a
mother with magnitude mi . This term will, in general, be
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that the Laplace transform of d f /dt is ! times the Laplace
transform of f (t) minus f (0), we get N(t ,r!) as the deriva-
tive of a convolution

N" t ,r! #!
c!"$

%"$#

d
dt!0

t
dt!

W" t!,r! #

" t"t!#1"$
!c!0

"$Dt
1"$W" t ,r! #.

"32#

In Eq. "32#, we have dropped the Dirac function coming
from the inverse Laplace transform of the constant term
f (0), which provides a contribution only at the origin of
time t!0. Note that the operator &1/%($)'
#(d/dt)(0

t dt!&W(t!,r!)/(t"t!)1"$' is nothing but the so-
called fractional Riemann-Liouville derivative operator of
order 1"$ applied to the function W(t ,r!) of time t and is
usually denoted 0Dt

1"$W(t ,r!).

B. The standard diffusion case !Ì1 and µÌ2

The standard diffusion process is recovered for $)1 "for
which the average waiting time is finite# and for *)2 "for
which the variance of the jump length is finite#. In this case,
N̂(! ,k! )! ŜM(! ,k! )/(!c!$+2k2). For an impulsive source
leading to ŜM(! ,k! )!const, this is the Laplace-Fourier trans-
form of the standard diffusion propagator

N" t ,r! #,
1

"Dt #d/2
exp&""r! #2/Dt' where D!+2/c!,

"33#

where d is here the space dimension. This solution is valid
for "r!"/!Dt not too large. For larger values, large deviations
lead to corrections with the power-law tail of the input jump
distribution -(r!).1/"r!"1$* defined in Eq. "5#, along the
lines presented, for instance, in Ref. &12' "Sec. 3.5#. This
regime is not relevant to the aftershock problem for which
usually 0%$%1.

C. Long waiting times „!Ë1… and finite variance
of the jump sizes „µÌ2…

Putting the leading terms of the expansions of -̂(k! ) "23#
and of /̂(!) "26# in Eq. "21# gives

N̂"! ,k! #!
1

"!c!#$$"+k #2
. "34#

The expression "34# can be inverted with respect to the Fou-
rier transform, and then inverted with respect to the Laplace
transform using Fox functions &75,81'. The solution for
W(t ,r!) in one dimension is given, for instance, in Ref. &75'
in terms of an infinite sum

W" t ,r! #!
1
2D

1
t$/2

0
k!0

1
""1 #kz"k

k!%&1"$"k$1 #/2' , "35#

where

z!
Dt$/2

"r!"
"36#

and D!+/c!$/2.
Expression "35# and many others below involve the %

function of negative arguments. We recall that the function
%(u) can be analytically continued to the whole complex
plane, except for the simple poles u!0,"1,"2,"3, . . . .
Thus, %(u) is defined everywhere but at these poles. In order
to get the expression of the % function for negative argu-
ments, one can use two formulas: %(1"u)#%(u)
!2/sin(2u) and %(1$u)!u%(u). Both these formulas are
valid for all points with the possible exception of the
arguments at poles 0,"1,"2, . . . . For instance, %("$)
!%(1"$)/("$)!"&2/$ sin(2$)'/%($), for 0%$%1.
Expression "35# can be rewritten as a Fox function &82',

W" t ,z #!
1
2D

1
t$/2

H1,1
1,0#1z $"1"$/2,$/2#

"0,1# % , "37#

whose asymptotic dependence for large z, obtained from a
standard theorem of the Fox function &Eq. "1.6.3# of Ref.
&82'',

W" t ,z #.
1

Dt$/2
1

z (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)% "38#

is in agreement with the result of Roman and Alemany &83'
and Barkai et al. &81' for a space dimension d f!1, including
the dependence in the power law prefactor to the exponen-
tial. The exponential dependence W(t ,r).exp
&"const(r/Dt$/2)2/(2"$)' in Eq. "38# holds in arbitrary di-
mensions d f , the only modification occurring in the prefac-
tor whose power of z change with the space dimension d f as
&83,81'

Wdf" t ,z #.
1

Dt$/2
1

zd f (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)' . "39#

The expression of N(t ,r!) can be obtained from W(t ,r!) using
the fractional Riemann-Liouville derivation "32# of order
&1"$' . Inserting expression "35# in Eq. "32# and using the
expression of the fractional Riemann-Liouville derivative
operator 0Dt

3 applied to an arbitrary power t*, i.e., 0Dt
3t*

!&%(1$*)/%(1$*"3)'t*"3, we obtain

N" t ,r! #!
c!"$

2Dt1"($/2) 0
k!0

1
""1 #kzk

k!%&"1"k #$/2' . "40#

Expression "40# can be used to evaluate N(t ,r!) for small z,
but the numerical evaluation of Eq. "40# is impossible for
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𝑁 𝛽, 𝑘 = 𝑆� 𝛽, 𝑘
1

𝛽𝑐r + 𝜎g𝑘g

in real domain

But 𝜃 > 1	is not appropriate
case of  𝜃 < 1	?

Φi 𝑘 = 1 − 𝜎g𝑘g + 𝑂 𝑘l with	𝑜 > 2, 

N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact
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N̂!" ,k! #!
ŜM!" ,k! #

1"n$̂!"#%̂!k! #
, !21#

where ŜM(" ,k! ) is the Laplace-Fourier transform of the
source SM(t ,r!) given by Eq. !17# and $̂(")&%̂(k! )' is the
Laplace !Fourier# transforms of $(t) &%(r!)' . For a main-
shock of magnitude M occurring at time t!0 and position
r!!0, the source term is thus ŜM(" ,k! )!((M )/n . The only
difference between expression !21# and the Laplace-Fourier
transform of the PDF of the CTRW of just having arrived at
r! at time t occurs when the branching ratio n is different
from 1. In general, solutions of CTRW models are expressed
for n!1 and for the variable W(t ,r!) which is simply related
to N(t ,r!) according to Eq. !19#. Using Eqs. !19# and !21#
leads to

Ŵ!" ,k! #!
1"$̂!"#

"

ŜM!" ,k! #

1"n$̂!"#%̂!k! #
. !22#

In the following, we exploit Eq. !22# to obtain analytical
solutions of the spatial ETAS model in different regimes, that
provide specific predictions on the conditions necessary for
observing aftershock diffusion. In addition, we provide spe-
cific predictions on the exponent H of the diffusion law
R)tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated many
possible forms for $(t) and %(r!) and have provided the
asymptotic long time and large scale dependence of W(t ,r!)
!see Refs. &73–75,77' and references therein#. Here, we re-
strict our discussion to the cases where both $(t) and %(r!)
have power-law tails as given by Eqs. !4# and !5#. The long-
time and large scale behavior of the ETAS and CTRW are
controlled by the behavior of the Laplace-Fourier transforms
for small " and small !k! !.
Two cases must be distinguished depending on the expo-

nent * controlling the weight of the tail of %(r!).
For *#2, the variance +(r!)2,!-2 of the jump size dis-

tribution exists. To leading order in k!!k! !, %̂(k! ) can be
expanded as

%̂!k! #!1"-2k2$O!ko# with o#2. !23#

For *.2, the variance +(r!)2, is infinite. This regime of
‘‘long jumps’’ leads to so-called Lévy flights. In this case, to
leading order in k!!k! !, %̂(k! ) can be expanded as

%̂!k! #!1"-*k*$O!ko#,

where 0%*.2 with o#* , !24#

where - is a characteristic distance defined by

-!" d&/!1"*#'1/*, 0%*%1
d0

*/!*"1 #sin!0*/2# , 1%*%2.
!25#

For a distribution $(t) of waiting times of the form of a
local Omori law !4# with exponent 1%1, $̂(") can be ex-
panded for small " as

$̂!"#!1"!"c!#1$O!"2# with 231, !26#

where c! is proportional to c up to a numerical constant
c!!c„/(1"1)…1/1 in the case 1%1.
Putting the leading terms of the expansions of %̂(k! ) for

small !k! ! and of $̂(") for small " in Eq. !21# gives

N̂!" ,k! #!
ŜM!" ,k! #

1"n$n!"c!#1$n-*k*
. !27#

The corresponding Ŵ(" ,k! ) is obtained from Eq. !22# by

Ŵ!" ,k! #! ŜM!" ,k! #
!"#1"1c!1

1"n$n!"c!#1$n-*k*
. !28#

The critical regime n!1 gets rid of the constant term 1"n
in the denominator of Eqs. !27# and !28#. This case is ana-
lyzed in details below.
The regime n!” 1 introduces a characteristic time t* given

by Eq. !1#. In the subcritical regime, Eq. !27# can be rewrit-
ten as

N̂!" ,k! #!
ŜM!" ,k! #

1"n
1

1$!"t*#1$!kr*#*
, !29#

where r* is defined by

r*!-# n
1"n $ 1/*. !30#

For t%t* and r%r*, the dressed propagator is given by the
same expression as for the critical case and all our results
below hold. For large times t#t* and large distances
r#r*, we can factorize Eq. !29# as a product of a function
of time and a function of space,

N̂!" ,k! #%
ŜM!" ,k! #

1"n
1

1$!"t*#1

1

!1$!kr*#*
. !31#

Thus, there is no diffusion in the subcritical regime for
t#t* and r#r*. We shall not analyze further this trivial
regime n%1 and t#t* and will only analyze the case
t%t*. If there is the need, the crossover can be calculated
explicitly using Eq. !27#.
In order to get the leading behavior of N(t ,r!) from that of

W(t ,r!), we see from Eqs. !21# and !22# that N̂(" ,k! )
!4"/&1"$̂(")'5Ŵ(" ,k! )6"1"1c!"1Ŵ(" ,k! ). The inverse
Laplace transform of 1/"1 is 1/&/(1)t1"1' . Using the fact

DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E 66, 061104 !2002#

061104-11

(33)



2017/5/29 Seismogenesis Seminar 25

that the Laplace transform of d f /dt is ! times the Laplace
transform of f (t) minus f (0), we get N(t ,r!) as the deriva-
tive of a convolution

N" t ,r! #!
c!"$

%"$#

d
dt!0

t
dt!

W" t!,r! #

" t"t!#1"$
!c!0

"$Dt
1"$W" t ,r! #.

"32#

In Eq. "32#, we have dropped the Dirac function coming
from the inverse Laplace transform of the constant term
f (0), which provides a contribution only at the origin of
time t!0. Note that the operator &1/%($)'
#(d/dt)(0

t dt!&W(t!,r!)/(t"t!)1"$' is nothing but the so-
called fractional Riemann-Liouville derivative operator of
order 1"$ applied to the function W(t ,r!) of time t and is
usually denoted 0Dt

1"$W(t ,r!).

B. The standard diffusion case !Ì1 and µÌ2

The standard diffusion process is recovered for $)1 "for
which the average waiting time is finite# and for *)2 "for
which the variance of the jump length is finite#. In this case,
N̂(! ,k! )! ŜM(! ,k! )/(!c!$+2k2). For an impulsive source
leading to ŜM(! ,k! )!const, this is the Laplace-Fourier trans-
form of the standard diffusion propagator

N" t ,r! #,
1

"Dt #d/2
exp&""r! #2/Dt' where D!+2/c!,

"33#

where d is here the space dimension. This solution is valid
for "r!"/!Dt not too large. For larger values, large deviations
lead to corrections with the power-law tail of the input jump
distribution -(r!).1/"r!"1$* defined in Eq. "5#, along the
lines presented, for instance, in Ref. &12' "Sec. 3.5#. This
regime is not relevant to the aftershock problem for which
usually 0%$%1.

C. Long waiting times „!Ë1… and finite variance
of the jump sizes „µÌ2…

Putting the leading terms of the expansions of -̂(k! ) "23#
and of /̂(!) "26# in Eq. "21# gives

N̂"! ,k! #!
1

"!c!#$$"+k #2
. "34#

The expression "34# can be inverted with respect to the Fou-
rier transform, and then inverted with respect to the Laplace
transform using Fox functions &75,81'. The solution for
W(t ,r!) in one dimension is given, for instance, in Ref. &75'
in terms of an infinite sum

W" t ,r! #!
1
2D

1
t$/2

0
k!0

1
""1 #kz"k

k!%&1"$"k$1 #/2' , "35#

where

z!
Dt$/2

"r!"
"36#

and D!+/c!$/2.
Expression "35# and many others below involve the %

function of negative arguments. We recall that the function
%(u) can be analytically continued to the whole complex
plane, except for the simple poles u!0,"1,"2,"3, . . . .
Thus, %(u) is defined everywhere but at these poles. In order
to get the expression of the % function for negative argu-
ments, one can use two formulas: %(1"u)#%(u)
!2/sin(2u) and %(1$u)!u%(u). Both these formulas are
valid for all points with the possible exception of the
arguments at poles 0,"1,"2, . . . . For instance, %("$)
!%(1"$)/("$)!"&2/$ sin(2$)'/%($), for 0%$%1.
Expression "35# can be rewritten as a Fox function &82',

W" t ,z #!
1
2D

1
t$/2

H1,1
1,0#1z $"1"$/2,$/2#

"0,1# % , "37#

whose asymptotic dependence for large z, obtained from a
standard theorem of the Fox function &Eq. "1.6.3# of Ref.
&82'',

W" t ,z #.
1

Dt$/2
1

z (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)% "38#

is in agreement with the result of Roman and Alemany &83'
and Barkai et al. &81' for a space dimension d f!1, including
the dependence in the power law prefactor to the exponen-
tial. The exponential dependence W(t ,r).exp
&"const(r/Dt$/2)2/(2"$)' in Eq. "38# holds in arbitrary di-
mensions d f , the only modification occurring in the prefac-
tor whose power of z change with the space dimension d f as
&83,81'

Wdf" t ,z #.
1

Dt$/2
1

zd f (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)' . "39#

The expression of N(t ,r!) can be obtained from W(t ,r!) using
the fractional Riemann-Liouville derivation "32# of order
&1"$' . Inserting expression "35# in Eq. "32# and using the
expression of the fractional Riemann-Liouville derivative
operator 0Dt

3 applied to an arbitrary power t*, i.e., 0Dt
3t*

!&%(1$*)/%(1$*"3)'t*"3, we obtain

N" t ,r! #!
c!"$

2Dt1"($/2) 0
k!0

1
""1 #kzk

k!%&"1"k #$/2' . "40#

Expression "40# can be used to evaluate N(t ,r!) for small z,
but the numerical evaluation of Eq. "40# is impossible for
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𝜽 < 𝟏, 𝝁 > 𝟐

From complicated calculation,

for small 𝑧	(	𝑟	 ≫ 	𝐷𝑡𝜃/2)	

for large 𝑧	(	𝑟	 ≪ 𝐷𝑡𝜃/2)	

large z. In order to obtain the asymptotic behavior of N(t ,r!),
expression !40" can be rewritten as a Fox function #82$,

N! t ,r! "!
c!"%

2Dt1"(%/2)H1,1
1,0!1z "!%/2,%/2"

!0,1" # . !41"

Employing again the standard theorem of the Fox function
#Eq. !1.6.3" of Ref. #82$", the asymptotic behavior of N(t ,r)
for large distances r such that r#Dt%/2 is given by

N! t ,r "&
c!"%

Dt1"(%/2) $ %r!%

Dt%/2&
(1"%)/(2"%)

$exp!"$ 1"
%

2 & $ %

2 & %/(2"%)$ %r!%

Dt%/2&
2/(2"%)# .

!42"

The exponential dependence N(t ,r)&exp
#"const(r/Dt%/2)2/2"%$ in Eq. !42" holds in arbitrary dimen-
sions.
This expression becomes incorrect for very large dis-

tances because it would predict an exponential or slightly
superexponential decay with r. This cannot be true as the
global law cannot decay faster than the local law !5". The
reason for Eq. !42" to become incorrect at large distances is
that the expansion of N̂(' ,k! ) for small %k! % !large distances"
given by Eq. !34" has been truncated at the order k2. There
is, however, a subdominant term (k) that describes the
power-law tail of the local law !5" and also of the global law
asymptotically. A similar situation occurs in the application
of the central limit theorem for sums of N random variables
with power-law distributions with exponents )#2 #12$: the
distribution of the sum S is a Gaussian in its bulk for
%S%%!N lnN and crosses over to a power law with tail ex-
ponent ) for larger S. In a similar way, the crossover of
N(t ,r) to the asymptotic local power law !5" can be recov-
ered by an analysis including the subleading correction (k)

to the expansion !34".
Expression !40" shows that the global rate of seismicity

cannot be factorized as a product of a distribution of times
and a distribution of distances. This space-time coupling im-
plies that the seismic activity diffuses with time, and that the
decay of the rate of aftershocks depends on the distance from
the first mainshock. This coupling of space and time stems
from the cascade of aftershocks, from the primary after-
shocks to the secondary aftershocks to the tertiary after-
shocks, and so on.
Figure 4 presents the decay of the seismic activity N(r ,t)

obtained using expression !40" for small z and expression
!42" for large z, as a function of the time from the mainshock
and as a function of the distances r. Close to the mainshock
epicenter, expression !40" predicts that the global seismicity
rate decays with time as the renormalized Omori law

N! t ,0"&
1

t1"%/2 . !43"

FIG. 4. Rate of seismicity N(t ,r) in the critical regime n!1 for
%!0.2, )#2, c!!1 day, and *!1 km, evaluated from expres-
sions !40" and !42", plotted as a function of the time !a" for different
values of the distance r between the mainshock and its aftershocks,
and !b",!c" as a function of r #logarithmic scale for r in !b" and
linear scale for r in !c"$ for different values of the time between the
mainshock and its aftershocks. The temporal decay of seismicity
with time is characterized by a power-law decay N(r ,t)&1/t1"%/2

close to the mainshock epicenter or at large times for r&Dt%/2. For
large distances r'Dt%/2, there is a truncation of the power-law
decay at early times t%/2&r/D , because the seismicity has not yet
diffused up to the distance r. Although the distribution of distances
between a mainshock and its direct aftershocks +(r) follows a
power-law distribution with exponent 1() , the log-linear graph
!c" shows that the global rate of aftershocks N(r! ,t) decreases ap-
proximately exponentially as a function of the distance from the
mainshock, with a characteristic distance that increases with time.
This is in agreement with expression !42" that predicts N(t ,r)
&exp#(%r!%/Dt%/2)2/(2"%)$ , i.e., N(t ,r)&exp#C(t)%r!%q$ with an expo-
nent q!2/(2"%) close to 1 within the exponential. The same re-
mark as for Fig. 2 applies: the representation of our predictions for
very large times is made for pedagogical purpose to illustrate
clearly the different regimes.
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N(t,r) cannot be factorized = diffusion

𝑅	~𝑡𝐻	with H= 𝜃/2 : subdiffusion

(40)

(42)

that the Laplace transform of d f /dt is ! times the Laplace
transform of f (t) minus f (0), we get N(t ,r!) as the deriva-
tive of a convolution

N" t ,r! #!
c!"$

%"$#

d
dt!0

t
dt!

W" t!,r! #

" t"t!#1"$
!c!0

"$Dt
1"$W" t ,r! #.

"32#

In Eq. "32#, we have dropped the Dirac function coming
from the inverse Laplace transform of the constant term
f (0), which provides a contribution only at the origin of
time t!0. Note that the operator &1/%($)'
#(d/dt)(0

t dt!&W(t!,r!)/(t"t!)1"$' is nothing but the so-
called fractional Riemann-Liouville derivative operator of
order 1"$ applied to the function W(t ,r!) of time t and is
usually denoted 0Dt

1"$W(t ,r!).

B. The standard diffusion case !Ì1 and µÌ2

The standard diffusion process is recovered for $)1 "for
which the average waiting time is finite# and for *)2 "for
which the variance of the jump length is finite#. In this case,
N̂(! ,k! )! ŜM(! ,k! )/(!c!$+2k2). For an impulsive source
leading to ŜM(! ,k! )!const, this is the Laplace-Fourier trans-
form of the standard diffusion propagator

N" t ,r! #,
1

"Dt #d/2
exp&""r! #2/Dt' where D!+2/c!,

"33#

where d is here the space dimension. This solution is valid
for "r!"/!Dt not too large. For larger values, large deviations
lead to corrections with the power-law tail of the input jump
distribution -(r!).1/"r!"1$* defined in Eq. "5#, along the
lines presented, for instance, in Ref. &12' "Sec. 3.5#. This
regime is not relevant to the aftershock problem for which
usually 0%$%1.

C. Long waiting times „!Ë1… and finite variance
of the jump sizes „µÌ2…

Putting the leading terms of the expansions of -̂(k! ) "23#
and of /̂(!) "26# in Eq. "21# gives

N̂"! ,k! #!
1

"!c!#$$"+k #2
. "34#

The expression "34# can be inverted with respect to the Fou-
rier transform, and then inverted with respect to the Laplace
transform using Fox functions &75,81'. The solution for
W(t ,r!) in one dimension is given, for instance, in Ref. &75'
in terms of an infinite sum

W" t ,r! #!
1
2D

1
t$/2

0
k!0

1
""1 #kz"k

k!%&1"$"k$1 #/2' , "35#

where

z!
Dt$/2

"r!"
"36#

and D!+/c!$/2.
Expression "35# and many others below involve the %

function of negative arguments. We recall that the function
%(u) can be analytically continued to the whole complex
plane, except for the simple poles u!0,"1,"2,"3, . . . .
Thus, %(u) is defined everywhere but at these poles. In order
to get the expression of the % function for negative argu-
ments, one can use two formulas: %(1"u)#%(u)
!2/sin(2u) and %(1$u)!u%(u). Both these formulas are
valid for all points with the possible exception of the
arguments at poles 0,"1,"2, . . . . For instance, %("$)
!%(1"$)/("$)!"&2/$ sin(2$)'/%($), for 0%$%1.
Expression "35# can be rewritten as a Fox function &82',

W" t ,z #!
1
2D

1
t$/2

H1,1
1,0#1z $"1"$/2,$/2#

"0,1# % , "37#

whose asymptotic dependence for large z, obtained from a
standard theorem of the Fox function &Eq. "1.6.3# of Ref.
&82'',

W" t ,z #.
1

Dt$/2
1

z (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)% "38#

is in agreement with the result of Roman and Alemany &83'
and Barkai et al. &81' for a space dimension d f!1, including
the dependence in the power law prefactor to the exponen-
tial. The exponential dependence W(t ,r).exp
&"const(r/Dt$/2)2/(2"$)' in Eq. "38# holds in arbitrary di-
mensions d f , the only modification occurring in the prefac-
tor whose power of z change with the space dimension d f as
&83,81'

Wdf" t ,z #.
1

Dt$/2
1

zd f (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)' . "39#

The expression of N(t ,r!) can be obtained from W(t ,r!) using
the fractional Riemann-Liouville derivation "32# of order
&1"$' . Inserting expression "35# in Eq. "32# and using the
expression of the fractional Riemann-Liouville derivative
operator 0Dt

3 applied to an arbitrary power t*, i.e., 0Dt
3t*

!&%(1$*)/%(1$*"3)'t*"3, we obtain

N" t ,r! #!
c!"$

2Dt1"($/2) 0
k!0

1
""1 #kzk

k!%&"1"k #$/2' . "40#

Expression "40# can be used to evaluate N(t ,r!) for small z,
but the numerical evaluation of Eq. "40# is impossible for
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large z. In order to obtain the asymptotic behavior of N(t ,r!),
expression !40" can be rewritten as a Fox function #82$,

N! t ,r! "!
c!"%

2Dt1"(%/2)H1,1
1,0!1z "!%/2,%/2"

!0,1" # . !41"

Employing again the standard theorem of the Fox function
#Eq. !1.6.3" of Ref. #82$", the asymptotic behavior of N(t ,r)
for large distances r such that r#Dt%/2 is given by

N! t ,r "&
c!"%

Dt1"(%/2) $ %r!%

Dt%/2&
(1"%)/(2"%)

$exp!"$ 1"
%

2 & $ %

2 & %/(2"%)$ %r!%

Dt%/2&
2/(2"%)# .

!42"

The exponential dependence N(t ,r)&exp
#"const(r/Dt%/2)2/2"%$ in Eq. !42" holds in arbitrary dimen-
sions.
This expression becomes incorrect for very large dis-

tances because it would predict an exponential or slightly
superexponential decay with r. This cannot be true as the
global law cannot decay faster than the local law !5". The
reason for Eq. !42" to become incorrect at large distances is
that the expansion of N̂(' ,k! ) for small %k! % !large distances"
given by Eq. !34" has been truncated at the order k2. There
is, however, a subdominant term (k) that describes the
power-law tail of the local law !5" and also of the global law
asymptotically. A similar situation occurs in the application
of the central limit theorem for sums of N random variables
with power-law distributions with exponents )#2 #12$: the
distribution of the sum S is a Gaussian in its bulk for
%S%%!N lnN and crosses over to a power law with tail ex-
ponent ) for larger S. In a similar way, the crossover of
N(t ,r) to the asymptotic local power law !5" can be recov-
ered by an analysis including the subleading correction (k)

to the expansion !34".
Expression !40" shows that the global rate of seismicity

cannot be factorized as a product of a distribution of times
and a distribution of distances. This space-time coupling im-
plies that the seismic activity diffuses with time, and that the
decay of the rate of aftershocks depends on the distance from
the first mainshock. This coupling of space and time stems
from the cascade of aftershocks, from the primary after-
shocks to the secondary aftershocks to the tertiary after-
shocks, and so on.
Figure 4 presents the decay of the seismic activity N(r ,t)

obtained using expression !40" for small z and expression
!42" for large z, as a function of the time from the mainshock
and as a function of the distances r. Close to the mainshock
epicenter, expression !40" predicts that the global seismicity
rate decays with time as the renormalized Omori law

N! t ,0"&
1

t1"%/2 . !43"

FIG. 4. Rate of seismicity N(t ,r) in the critical regime n!1 for
%!0.2, )#2, c!!1 day, and *!1 km, evaluated from expres-
sions !40" and !42", plotted as a function of the time !a" for different
values of the distance r between the mainshock and its aftershocks,
and !b",!c" as a function of r #logarithmic scale for r in !b" and
linear scale for r in !c"$ for different values of the time between the
mainshock and its aftershocks. The temporal decay of seismicity
with time is characterized by a power-law decay N(r ,t)&1/t1"%/2

close to the mainshock epicenter or at large times for r&Dt%/2. For
large distances r'Dt%/2, there is a truncation of the power-law
decay at early times t%/2&r/D , because the seismicity has not yet
diffused up to the distance r. Although the distribution of distances
between a mainshock and its direct aftershocks +(r) follows a
power-law distribution with exponent 1() , the log-linear graph
!c" shows that the global rate of aftershocks N(r! ,t) decreases ap-
proximately exponentially as a function of the distance from the
mainshock, with a characteristic distance that increases with time.
This is in agreement with expression !42" that predicts N(t ,r)
&exp#(%r!%/Dt%/2)2/(2"%)$ , i.e., N(t ,r)&exp#C(t)%r!%q$ with an expo-
nent q!2/(2"%) close to 1 within the exponential. The same re-
mark as for Fig. 2 applies: the representation of our predictions for
very large times is made for pedagogical purpose to illustrate
clearly the different regimes.
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#"const(r/Dt%/2)2/2"%$ in Eq. !42" holds in arbitrary dimen-
sions.
This expression becomes incorrect for very large dis-

tances because it would predict an exponential or slightly
superexponential decay with r. This cannot be true as the
global law cannot decay faster than the local law !5". The
reason for Eq. !42" to become incorrect at large distances is
that the expansion of N̂(' ,k! ) for small %k! % !large distances"
given by Eq. !34" has been truncated at the order k2. There
is, however, a subdominant term (k) that describes the
power-law tail of the local law !5" and also of the global law
asymptotically. A similar situation occurs in the application
of the central limit theorem for sums of N random variables
with power-law distributions with exponents )#2 #12$: the
distribution of the sum S is a Gaussian in its bulk for
%S%%!N lnN and crosses over to a power law with tail ex-
ponent ) for larger S. In a similar way, the crossover of
N(t ,r) to the asymptotic local power law !5" can be recov-
ered by an analysis including the subleading correction (k)

to the expansion !34".
Expression !40" shows that the global rate of seismicity

cannot be factorized as a product of a distribution of times
and a distribution of distances. This space-time coupling im-
plies that the seismic activity diffuses with time, and that the
decay of the rate of aftershocks depends on the distance from
the first mainshock. This coupling of space and time stems
from the cascade of aftershocks, from the primary after-
shocks to the secondary aftershocks to the tertiary after-
shocks, and so on.
Figure 4 presents the decay of the seismic activity N(r ,t)

obtained using expression !40" for small z and expression
!42" for large z, as a function of the time from the mainshock
and as a function of the distances r. Close to the mainshock
epicenter, expression !40" predicts that the global seismicity
rate decays with time as the renormalized Omori law
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FIG. 4. Rate of seismicity N(t ,r) in the critical regime n!1 for
%!0.2, )#2, c!!1 day, and *!1 km, evaluated from expres-
sions !40" and !42", plotted as a function of the time !a" for different
values of the distance r between the mainshock and its aftershocks,
and !b",!c" as a function of r #logarithmic scale for r in !b" and
linear scale for r in !c"$ for different values of the time between the
mainshock and its aftershocks. The temporal decay of seismicity
with time is characterized by a power-law decay N(r ,t)&1/t1"%/2

close to the mainshock epicenter or at large times for r&Dt%/2. For
large distances r'Dt%/2, there is a truncation of the power-law
decay at early times t%/2&r/D , because the seismicity has not yet
diffused up to the distance r. Although the distribution of distances
between a mainshock and its direct aftershocks +(r) follows a
power-law distribution with exponent 1() , the log-linear graph
!c" shows that the global rate of aftershocks N(r! ,t) decreases ap-
proximately exponentially as a function of the distance from the
mainshock, with a characteristic distance that increases with time.
This is in agreement with expression !42" that predicts N(t ,r)
&exp#(%r!%/Dt%/2)2/(2"%)$ , i.e., N(t ,r)&exp#C(t)%r!%q$ with an expo-
nent q!2/(2"%) close to 1 within the exponential. The same re-
mark as for Fig. 2 applies: the representation of our predictions for
very large times is made for pedagogical purpose to illustrate
clearly the different regimes.
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large z. In order to obtain the asymptotic behavior of N(t ,r!),
expression !40" can be rewritten as a Fox function #82$,
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Employing again the standard theorem of the Fox function
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The exponential dependence N(t ,r)&exp
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tances because it would predict an exponential or slightly
superexponential decay with r. This cannot be true as the
global law cannot decay faster than the local law !5". The
reason for Eq. !42" to become incorrect at large distances is
that the expansion of N̂(' ,k! ) for small %k! % !large distances"
given by Eq. !34" has been truncated at the order k2. There
is, however, a subdominant term (k) that describes the
power-law tail of the local law !5" and also of the global law
asymptotically. A similar situation occurs in the application
of the central limit theorem for sums of N random variables
with power-law distributions with exponents )#2 #12$: the
distribution of the sum S is a Gaussian in its bulk for
%S%%!N lnN and crosses over to a power law with tail ex-
ponent ) for larger S. In a similar way, the crossover of
N(t ,r) to the asymptotic local power law !5" can be recov-
ered by an analysis including the subleading correction (k)

to the expansion !34".
Expression !40" shows that the global rate of seismicity

cannot be factorized as a product of a distribution of times
and a distribution of distances. This space-time coupling im-
plies that the seismic activity diffuses with time, and that the
decay of the rate of aftershocks depends on the distance from
the first mainshock. This coupling of space and time stems
from the cascade of aftershocks, from the primary after-
shocks to the secondary aftershocks to the tertiary after-
shocks, and so on.
Figure 4 presents the decay of the seismic activity N(r ,t)

obtained using expression !40" for small z and expression
!42" for large z, as a function of the time from the mainshock
and as a function of the distances r. Close to the mainshock
epicenter, expression !40" predicts that the global seismicity
rate decays with time as the renormalized Omori law

N! t ,0"&
1

t1"%/2 . !43"

FIG. 4. Rate of seismicity N(t ,r) in the critical regime n!1 for
%!0.2, )#2, c!!1 day, and *!1 km, evaluated from expres-
sions !40" and !42", plotted as a function of the time !a" for different
values of the distance r between the mainshock and its aftershocks,
and !b",!c" as a function of r #logarithmic scale for r in !b" and
linear scale for r in !c"$ for different values of the time between the
mainshock and its aftershocks. The temporal decay of seismicity
with time is characterized by a power-law decay N(r ,t)&1/t1"%/2

close to the mainshock epicenter or at large times for r&Dt%/2. For
large distances r'Dt%/2, there is a truncation of the power-law
decay at early times t%/2&r/D , because the seismicity has not yet
diffused up to the distance r. Although the distribution of distances
between a mainshock and its direct aftershocks +(r) follows a
power-law distribution with exponent 1() , the log-linear graph
!c" shows that the global rate of aftershocks N(r! ,t) decreases ap-
proximately exponentially as a function of the distance from the
mainshock, with a characteristic distance that increases with time.
This is in agreement with expression !42" that predicts N(t ,r)
&exp#(%r!%/Dt%/2)2/(2"%)$ , i.e., N(t ,r)&exp#C(t)%r!%q$ with an expo-
nent q!2/(2"%) close to 1 within the exponential. The same re-
mark as for Fig. 2 applies: the representation of our predictions for
very large times is made for pedagogical purpose to illustrate
clearly the different regimes.
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The same decay is found at any fixed point r! for times
t!(!r!!/D)2/!. At all times, the same decay 1/t1"!/2 is also
obtained by measuring the aftershock seismicity in a local
box at a distance from the main shock origin increasing with
time as r"t!/2 #this is nothing but putting z#const in Eq.
$40%&. At large distances r!Dt!/2, the global decay law is
different from a power-law decay. Figure 4 shows that the
rate of aftershocks presents a truncation at early times, which
increases as the distance r increases. At large times, the rate
of aftershocks recovers the 1/t1"!/2 power-law decay $43%.
We stress that a fit of the global law N(r ,t) over the whole
time interval by an Omori law would yield an apparent ex-
ponent p$1"!/2 that decreases with r.
Integrating Eq. $40% over the whole one-dimensional

space, we recover the global Omori law,

N$ t %#" drN$ t ,r %"
1

t1"!
$44%

found in Refs. #25,26&. Thus, we have found an additional
source of variability of the exponent p of the Omori law: if
measured over the whole catalog, we should measure
p#1"! in the critical regime n#1 while p#1"!/2 is
slightly larger when measured in certain time and space-
windows, as described above. Thus, in this regime, pruning
of catalogs may lead to continuous change from the value
1"! to 1"!/2. In addition, as we have mentioned, the
crossover in time may lead to still smaller apparent expo-
nents, thus enhancing the impression of variability of the

exponent p. In reality, this range of p values are seen to result
from the complex spatiotemporal organization of the after-
shock seismicity of the ETAS model. These results should
lead us to be cautious when analyzing real catalogs with
respect to the conditions and regimes under which the analy-
sis is performed.
There is another observable that characterizes how an af-

tershock sequence invades space as a function of time. Ex-
pression $40% indeed predicts a subdiffusion process quanti-
fied by

'!r!!2("t2H, $45%

with H#!/2 since the natural variable is z given by Eq. $36%.
Indeed, expression $40% tells us that, up to a global rescaling
function of time, the rate of aftershocks is identical for a
fixed value of z. Thus, any aftershock structure diffuses ac-
cording to Eq. $45%.
This prediction is checked in Fig. 5 by numerical simula-

tions. 1000 synthetic catalogs have been generated with
)#3, !#0.2, and n#1. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock has been averaged over these 1000
simulations. The theoretical diffusion exponent is H#!/2
#0.1, in good agreement with the asymptotic behavior ob-
served in the numerical simulation. In practice, in order to
minimize the effect of fluctuations and optimize the speed of
convergence, we estimate numerically exp#'ln!r!!(& which is
also expected to scale as exp#'ln!r!!(&"t!/2 due to the simple
scaling form of Eq. $41%.
This problem has also been solved exactly in Ref. #84& in

the context of the so-called fractional Fokker-Planck equa-
tion, which amounts to replacing the distribution *(r!) of
jumps $5% by a Gaussian function. This fractional Fokker-
Planck equation allows one to introduce the possibility of
bias or drift in the CTRW and therefore in the aftershock
sequence.

D. Exponential waiting time distribution and long jump size
Lévy distribution „µË2…

This case with an exponential distribution

+$ t %#,e",t $46%

of waiting times with a Lévy distribution *(r!)#L)(!r!!) of
jump sizes with tail exponent )$2 has been investigated by
Budde et al. #85&. One finds

'!r!!2(1/2"t1/), $47%

corresponding to a superdiffusion regime with Hurst expo-
nent H#1/)!1/2. The full distribution function W(t ,r!) cor-
responding to the critical regime n#1 is known for ,t%1,

W$ t ,r! %-
1

$,t %1/)
L)# !r!!

$,t %1/)
$ . $48%

FIG. 5. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for nu-
merical simulations of the ETAS model in the critical regime
n#1, generated with the parameters !#0.2, d#1 km, )#3, and
c#10"3 day. The theoretical prediction for the diffusion exponent
is thus H#!/2#0.1. We observe a crossover from a larger expo-
nent at early times when the mean distance is close to the charac-
teristic scale d#1 km of the distribution of distances between an
aftershock and its progenitor, to a subdiffusion with an exponent
close to the theoretical prediction at large times. The solid line is a
fit of the numerical data for times t!10 days, which gives an ex-
ponent H#0.12 slightly larger than the predicted value H#0.1.
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The corresponding N(t ,r!) is obtained from Eq. !20". The
Laplace transform of the exponential distribution !46" is
#̂($)!%/($"%). We thus get

N̂!$ ,k! "!!$"%"Ŵ!$ ,k! ", !49"

and thus

N! t ,r! "!
&W! t ,r! "

&t "%W! t ,r! ". !50"

Expression !50" together with Eq. !48" predicts a diffusion
law r'tH with H!1/( which is in good agreement with our
simulations. At large times !r!!#(%t)1/(, N(t ,r!))%W(t ,r!)
'1/t1/(, giving an apparent local Omori exponent *!1
$1/( . This offers a different mechanism for generating
Omori’s law for aftershocks from purely exponential local
relaxation but with a heavy distribution of jump sizes. This
power-law decay should be observed only at a fixed distance
r or over a limited domain from the mainshock in the regime
of large times.
Integrating over the whole space, +dr!W(t ,r!)!1, which

gives N(t)!,(t)"% equal to a constant seismic rate. This
results from an initial mainshock at t!0 leading to the cas-
cade of aftershocks adjusting delicately to this constant rate
for the critical value n!1 of the branching parameter. In the
subcritical regime n%1, the Omori law integrated over
space gives instead N(t)-exp.$(1$n)%t/, showing that the
characteristic decay time 1/(1$n)% of the dressed Omori
propagator N(t) becomes much larger !much longer
memory" that the decay time 1/% of the bare Omori propa-
gator.
For (&2, we recover the standard diffusion correspond-

ing to *&1 and (&2 discussed in Sec. IVB.

E. Long waiting times „!Ë1… and long jump sizes
„Lévy flight regime for µÏ2…

Putting the leading terms of the expansions of 0̂(k! ) and
of #̂($) in Eq. !21" gives

N̂!$ ,k! "! ŜM!$ ,k! "
1

!$c!"*"!1k "(
. !51"

The corresponding Ŵ($ ,k! ) is given by

Ŵ!$ ,k! "! ŜM!$ ,k! "
!$"*$1c!*

!$c!"*"!1k "(
. !52"

Equation !52" has been studied extensively in the context of
the CTRW model as a long wavelength !k! !→0 and long time
$→0 approximation to investigate the long time behavior of
the CTRW. Kotulski .86/ has developed a rigorous approach,
based on limit theorems, to classify the asymptotic behaviors
of different type of CTRWs and justifies the approximation
!52" for the long time behavior. Barkai .87/ has studied the
quality of the long wavelength !k! !→0 and long time $→0

approximation !52" by solving the exact CTRW problem for
the case when the waiting time distribution #(t) is a one-
sided stable Lévy law of index * with the same tail as Eq. !4"
and the distribution 0(r!) of jumps is a symmetric stable
Lévy of index ( with the same tail as Eq. !5". Their Laplace
and Fourier transforms that appear in the denominator of Eq.
!22" are, respectively, #̂($)!exp.$$*/ and 0̂(k! )!exp
.$!k!!(/2/ . Note that the long wavelength !k! !→0 and long
time $→0 approximation gives 1$exp.$(c!$)*/exp
.$!1k!!(/!(c!$)*"!1k!!(, which recovers Eq. !51". By com-
paring the exact solution of Eq. !21" for #(t) and 0(r!) of
the above Lévy form with that of the long wavelength !k! !
→0 and long time $→0 approximation !52", Barkai .87/
finds that certain solutions of Eq. !52" diverge on the origin,
a behavior not found for the corresponding solutions of Eq.
!21". In addition, certain solutions of the full equation !21"
converge only very slowly for (%1 to the solutions of the
long-time approximation !52". These results validate our use
of the asymptotic long time behavior with respect to the
scaling laws but provide a note of caution if one needs more
precise nonasymptotic information. In this case, such infor-
mation can be obtained by a suitable analysis of the full
equation !21".
Using power counting, expression !52" predicts a diffu-

sion process !45" with exponent

H!
*

(
. !53"

This prediction is checked by numerical simulation of the
ETAS model in the critical regime n!1, with *!0.2, (
!0.9, shown in Fig. 6. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock indeed increases according to Eq. !45"
with an exponent H in very good agreement with the predic-
tion H!*/(!0.2. As the form of the denominator in Eq.
!52" is independent of the space dimension, the prediction
!53" is valid in any space dimension.
The natural variable for the expansions given below al-

lowing to compute N(t ,r!) is

z!
Dt*/(

!r!!
, !54"

where D!1/c!*/( and c!!c.2(1$*)/1/*.

1. z expansion of the solution

W(t ,r!) can be obtained as the following sum .Eq. !5.10"
of Ref. .88//

W! t ,r! "!
1

3!r!! 4
m!0

"5

!$1 "mzm(
2!m("1 "

2!m*"1 "
cos"32 !m("1 "# .

!55"

Applying Eq. !32" to Eq. !55" term by term in the sum, we
get
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and thus
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Expression !50" together with Eq. !48" predicts a diffusion
law r'tH with H!1/( which is in good agreement with our
simulations. At large times !r!!#(%t)1/(, N(t ,r!))%W(t ,r!)
'1/t1/(, giving an apparent local Omori exponent *!1
$1/( . This offers a different mechanism for generating
Omori’s law for aftershocks from purely exponential local
relaxation but with a heavy distribution of jump sizes. This
power-law decay should be observed only at a fixed distance
r or over a limited domain from the mainshock in the regime
of large times.
Integrating over the whole space, +dr!W(t ,r!)!1, which

gives N(t)!,(t)"% equal to a constant seismic rate. This
results from an initial mainshock at t!0 leading to the cas-
cade of aftershocks adjusting delicately to this constant rate
for the critical value n!1 of the branching parameter. In the
subcritical regime n%1, the Omori law integrated over
space gives instead N(t)-exp.$(1$n)%t/, showing that the
characteristic decay time 1/(1$n)% of the dressed Omori
propagator N(t) becomes much larger !much longer
memory" that the decay time 1/% of the bare Omori propa-
gator.
For (&2, we recover the standard diffusion correspond-

ing to *&1 and (&2 discussed in Sec. IVB.

E. Long waiting times „!Ë1… and long jump sizes
„Lévy flight regime for µÏ2…

Putting the leading terms of the expansions of 0̂(k! ) and
of #̂($) in Eq. !21" gives
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. !51"

The corresponding Ŵ($ ,k! ) is given by

Ŵ!$ ,k! "! ŜM!$ ,k! "
!$"*$1c!*

!$c!"*"!1k "(
. !52"

Equation !52" has been studied extensively in the context of
the CTRW model as a long wavelength !k! !→0 and long time
$→0 approximation to investigate the long time behavior of
the CTRW. Kotulski .86/ has developed a rigorous approach,
based on limit theorems, to classify the asymptotic behaviors
of different type of CTRWs and justifies the approximation
!52" for the long time behavior. Barkai .87/ has studied the
quality of the long wavelength !k! !→0 and long time $→0

approximation !52" by solving the exact CTRW problem for
the case when the waiting time distribution #(t) is a one-
sided stable Lévy law of index * with the same tail as Eq. !4"
and the distribution 0(r!) of jumps is a symmetric stable
Lévy of index ( with the same tail as Eq. !5". Their Laplace
and Fourier transforms that appear in the denominator of Eq.
!22" are, respectively, #̂($)!exp.$$*/ and 0̂(k! )!exp
.$!k!!(/2/ . Note that the long wavelength !k! !→0 and long
time $→0 approximation gives 1$exp.$(c!$)*/exp
.$!1k!!(/!(c!$)*"!1k!!(, which recovers Eq. !51". By com-
paring the exact solution of Eq. !21" for #(t) and 0(r!) of
the above Lévy form with that of the long wavelength !k! !
→0 and long time $→0 approximation !52", Barkai .87/
finds that certain solutions of Eq. !52" diverge on the origin,
a behavior not found for the corresponding solutions of Eq.
!21". In addition, certain solutions of the full equation !21"
converge only very slowly for (%1 to the solutions of the
long-time approximation !52". These results validate our use
of the asymptotic long time behavior with respect to the
scaling laws but provide a note of caution if one needs more
precise nonasymptotic information. In this case, such infor-
mation can be obtained by a suitable analysis of the full
equation !21".
Using power counting, expression !52" predicts a diffu-

sion process !45" with exponent

H!
*

(
. !53"

This prediction is checked by numerical simulation of the
ETAS model in the critical regime n!1, with *!0.2, (
!0.9, shown in Fig. 6. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock indeed increases according to Eq. !45"
with an exponent H in very good agreement with the predic-
tion H!*/(!0.2. As the form of the denominator in Eq.
!52" is independent of the space dimension, the prediction
!53" is valid in any space dimension.
The natural variable for the expansions given below al-

lowing to compute N(t ,r!) is

z!
Dt*/(

!r!!
, !54"

where D!1/c!*/( and c!!c.2(1$*)/1/*.

1. z expansion of the solution

W(t ,r!) can be obtained as the following sum .Eq. !5.10"
of Ref. .88//

W! t ,r! "!
1

3!r!! 4
m!0

"5

!$1 "mzm(
2!m("1 "

2!m*"1 "
cos"32 !m("1 "# .

!55"

Applying Eq. !32" to Eq. !55" term by term in the sum, we
get
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N! t ,r! "!
c!"#

D$t1"###/% &
m!0

#'

!"1 "mz1#m%
(!m%#1 "

(„!m#1 "#…

$cos!$2 !m%#1 "" . !56"

The asymptotics

(!m%#%#1 "(!m##1 "

(!m####1 "(!m%#1 "
)

(!m%#%#1 "(„!m#1 "#…
(„!m#2 "#…(!m%#1 "

)m%"# !57"

show that the series !55" and !56" exist only for %%# . It can
be shown that these series exist for all z in this case. This
series converges very slowly for large z but the Padé sum-
mation method *89+ can be used to improve the convergence
of Eq. !56" in the case %%# , and can also be used to esti-
mate Eq. !56" in the case %&# for which the series diverges.
The space integral ,drN(t ,r) over the whole one-

dimensional volume V, with N(t ,r) given by Eq. !56", recov-
ers the global Omori law

#
V
drN! t ,r ")

1
t1"#

. !58"

Note the nontrivial phenomenon in which the superposition
of all aftershock activities transforms the local Omori law or
‘‘bare propagator’’ !4" -(t))1/t1## into the global Omori
law or ‘‘dressed propagator’’ 1/t1"#. This effect was pre-
dicted in Refs. *25,26+ in the version of the ETAS model
without space dependence. These results are consistent with
the claim of Sec. II D, according to which all results reported
previously for the version of the ETAS model without space
dependence hold also for the version of the space-dependent
ETAS model studied here, when averaging over the whole
space.
The asymptotic behavior for $r!$'Dt#/% !i.e., z(1) and

%%# is obtained by keeping only the first nonzero term
(m!1) in Eq. !56" which is convergent for all z in the case
%%# ,

N! t ,r! "!

sin% $%

2 &
.c!$

(!1#%"

(!2#" % c!t & 1"2#% .

$r!$ & 1#%

for $r!$'Dt#/%. !59"

At fixed large $r!$ and for t%$r!/D$%/#, this predicts a local
Omori law with exponent p!1"2# .

2. 1Õz expansion of the solution

We use the theory of Fox functions *82+ to obtain N(t ,r!)
as an infinite series in 1/z . For this, we first rewrite expres-
sion !56" as a Fox function *82+,

N! t ,r! "!
c!"#

D%$t1"###/%

$R%H2,2
1,2! zei$/2'!1/% ,1/%",!1,1"

!1/% ,1/%",!#/%"##1,#/%"
" & ,
!60"

where R(z) indicates the real part of z.
The 1/z expansion of N(t ,r!) can be obtained using the

dual expansion of the Fox function !60" *expression !3.7.2"
of Ref. *82++

N! t ,r! "!
c"#

D$%t1"###/% &
m!0

#'

!"1 "m

$!%z1"%"m%
(„1"!m#1 "%…sin„!m#1 "%$/2…

(!"m#"

#
z"m

m!
$ cos!m$/2"

sin*!m#1 "$/%+(„#"!m#1 "#/%…" .
!61"

This expansion exists only for %&# *conditions of p. 71
below Eq. !3.7.2" of Ref. *82++. This is easily checked by the
behavior of an asymptotics similar to Eq. !57". Note that the
series !61" is not defined in the special case %!1 due to the
presence of the ill-defined ratio ((0)/((0) and a different
approach is required, such as the integral representation of
W(t ,r!) developed in Ref. *88+. The global Omori law ob-
tained by integrating over the whole space !61" is again
N(t))1/t1"#, as expected from the analysis of the ETAS
model without space dependence *26+.
Keeping only the largest term of Eq. !61" for large z, we

obtain the asymptotic behavior for small distances
r%Dt#/%,

N! t ,r "(
(!1"2%"sin!$%"sin!$#"

c!.$2

(!1##"

!r/."1"2%

1

! t/c!"1##

for %%0.5,

N! t ,r "(
c!"#

c!.%(!#"#/%"sin!$/%"

1

! t/c!"1"###/%

for 0.5%%%2. !62"

Note that for r%Dt#/% and 0.5%%%2, the leading behavior
of N(t ,r) is independent of r.
Equation !62" thus predicts an apparent exponent

p!1## for %%0.5,

p!1"###/% for 0.5%%%2, !63"

for small distances r%Dt#/%. This prediction is valid only in
the case %&# for which the series !61" is convergent. How-
ever, the same asymptotic results are also obtained by differ-
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N! t ,r! "!
c!"#

D$t1"###/% &
m!0

#'

!"1 "mz1#m%
(!m%#1 "

(„!m#1 "#…

$cos!$2 !m%#1 "" . !56"

The asymptotics

(!m%#%#1 "(!m##1 "

(!m####1 "(!m%#1 "
)

(!m%#%#1 "(„!m#1 "#…
(„!m#2 "#…(!m%#1 "

)m%"# !57"

show that the series !55" and !56" exist only for %%# . It can
be shown that these series exist for all z in this case. This
series converges very slowly for large z but the Padé sum-
mation method *89+ can be used to improve the convergence
of Eq. !56" in the case %%# , and can also be used to esti-
mate Eq. !56" in the case %&# for which the series diverges.
The space integral ,drN(t ,r) over the whole one-

dimensional volume V, with N(t ,r) given by Eq. !56", recov-
ers the global Omori law

#
V
drN! t ,r ")

1
t1"#

. !58"

Note the nontrivial phenomenon in which the superposition
of all aftershock activities transforms the local Omori law or
‘‘bare propagator’’ !4" -(t))1/t1## into the global Omori
law or ‘‘dressed propagator’’ 1/t1"#. This effect was pre-
dicted in Refs. *25,26+ in the version of the ETAS model
without space dependence. These results are consistent with
the claim of Sec. II D, according to which all results reported
previously for the version of the ETAS model without space
dependence hold also for the version of the space-dependent
ETAS model studied here, when averaging over the whole
space.
The asymptotic behavior for $r!$'Dt#/% !i.e., z(1) and

%%# is obtained by keeping only the first nonzero term
(m!1) in Eq. !56" which is convergent for all z in the case
%%# ,

N! t ,r! "!

sin% $%

2 &
.c!$

(!1#%"

(!2#" % c!t & 1"2#% .

$r!$ & 1#%

for $r!$'Dt#/%. !59"

At fixed large $r!$ and for t%$r!/D$%/#, this predicts a local
Omori law with exponent p!1"2# .

2. 1Õz expansion of the solution

We use the theory of Fox functions *82+ to obtain N(t ,r!)
as an infinite series in 1/z . For this, we first rewrite expres-
sion !56" as a Fox function *82+,

N! t ,r! "!
c!"#

D%$t1"###/%

$R%H2,2
1,2! zei$/2'!1/% ,1/%",!1,1"

!1/% ,1/%",!#/%"##1,#/%"
" & ,
!60"

where R(z) indicates the real part of z.
The 1/z expansion of N(t ,r!) can be obtained using the

dual expansion of the Fox function !60" *expression !3.7.2"
of Ref. *82++

N! t ,r! "!
c"#

D$%t1"###/% &
m!0

#'

!"1 "m

$!%z1"%"m%
(„1"!m#1 "%…sin„!m#1 "%$/2…

(!"m#"

#
z"m

m!
$ cos!m$/2"

sin*!m#1 "$/%+(„#"!m#1 "#/%…" .
!61"

This expansion exists only for %&# *conditions of p. 71
below Eq. !3.7.2" of Ref. *82++. This is easily checked by the
behavior of an asymptotics similar to Eq. !57". Note that the
series !61" is not defined in the special case %!1 due to the
presence of the ill-defined ratio ((0)/((0) and a different
approach is required, such as the integral representation of
W(t ,r!) developed in Ref. *88+. The global Omori law ob-
tained by integrating over the whole space !61" is again
N(t))1/t1"#, as expected from the analysis of the ETAS
model without space dependence *26+.
Keeping only the largest term of Eq. !61" for large z, we

obtain the asymptotic behavior for small distances
r%Dt#/%,

N! t ,r "(
(!1"2%"sin!$%"sin!$#"

c!.$2

(!1##"

!r/."1"2%

1

! t/c!"1##

for %%0.5,

N! t ,r "(
c!"#

c!.%(!#"#/%"sin!$/%"

1

! t/c!"1"###/%

for 0.5%%%2. !62"

Note that for r%Dt#/% and 0.5%%%2, the leading behavior
of N(t ,r) is independent of r.
Equation !62" thus predicts an apparent exponent

p!1## for %%0.5,

p!1"###/% for 0.5%%%2, !63"

for small distances r%Dt#/%. This prediction is valid only in
the case %&# for which the series !61" is convergent. How-
ever, the same asymptotic results are also obtained by differ-
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z expansion for small z and 1/z expansion for lagre z, 

for small 𝑧	(	𝑟	 ≫ 	𝐷𝑡t/2)	

for large 𝑧	(	𝑟	 ≪ 𝐷𝑡t/2)	

𝑝 = 1 − 2𝜃

(59)

(61)

that the Laplace transform of d f /dt is ! times the Laplace
transform of f (t) minus f (0), we get N(t ,r!) as the deriva-
tive of a convolution

N" t ,r! #!
c!"$

%"$#

d
dt!0

t
dt!

W" t!,r! #

" t"t!#1"$
!c!0

"$Dt
1"$W" t ,r! #.

"32#

In Eq. "32#, we have dropped the Dirac function coming
from the inverse Laplace transform of the constant term
f (0), which provides a contribution only at the origin of
time t!0. Note that the operator &1/%($)'
#(d/dt)(0

t dt!&W(t!,r!)/(t"t!)1"$' is nothing but the so-
called fractional Riemann-Liouville derivative operator of
order 1"$ applied to the function W(t ,r!) of time t and is
usually denoted 0Dt

1"$W(t ,r!).

B. The standard diffusion case !Ì1 and µÌ2

The standard diffusion process is recovered for $)1 "for
which the average waiting time is finite# and for *)2 "for
which the variance of the jump length is finite#. In this case,
N̂(! ,k! )! ŜM(! ,k! )/(!c!$+2k2). For an impulsive source
leading to ŜM(! ,k! )!const, this is the Laplace-Fourier trans-
form of the standard diffusion propagator

N" t ,r! #,
1

"Dt #d/2
exp&""r! #2/Dt' where D!+2/c!,

"33#

where d is here the space dimension. This solution is valid
for "r!"/!Dt not too large. For larger values, large deviations
lead to corrections with the power-law tail of the input jump
distribution -(r!).1/"r!"1$* defined in Eq. "5#, along the
lines presented, for instance, in Ref. &12' "Sec. 3.5#. This
regime is not relevant to the aftershock problem for which
usually 0%$%1.

C. Long waiting times „!Ë1… and finite variance
of the jump sizes „µÌ2…

Putting the leading terms of the expansions of -̂(k! ) "23#
and of /̂(!) "26# in Eq. "21# gives

N̂"! ,k! #!
1

"!c!#$$"+k #2
. "34#

The expression "34# can be inverted with respect to the Fou-
rier transform, and then inverted with respect to the Laplace
transform using Fox functions &75,81'. The solution for
W(t ,r!) in one dimension is given, for instance, in Ref. &75'
in terms of an infinite sum

W" t ,r! #!
1
2D

1
t$/2

0
k!0

1
""1 #kz"k

k!%&1"$"k$1 #/2' , "35#

where

z!
Dt$/2

"r!"
"36#

and D!+/c!$/2.
Expression "35# and many others below involve the %

function of negative arguments. We recall that the function
%(u) can be analytically continued to the whole complex
plane, except for the simple poles u!0,"1,"2,"3, . . . .
Thus, %(u) is defined everywhere but at these poles. In order
to get the expression of the % function for negative argu-
ments, one can use two formulas: %(1"u)#%(u)
!2/sin(2u) and %(1$u)!u%(u). Both these formulas are
valid for all points with the possible exception of the
arguments at poles 0,"1,"2, . . . . For instance, %("$)
!%(1"$)/("$)!"&2/$ sin(2$)'/%($), for 0%$%1.
Expression "35# can be rewritten as a Fox function &82',

W" t ,z #!
1
2D

1
t$/2

H1,1
1,0#1z $"1"$/2,$/2#

"0,1# % , "37#

whose asymptotic dependence for large z, obtained from a
standard theorem of the Fox function &Eq. "1.6.3# of Ref.
&82'',

W" t ,z #.
1

Dt$/2
1

z (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)% "38#

is in agreement with the result of Roman and Alemany &83'
and Barkai et al. &81' for a space dimension d f!1, including
the dependence in the power law prefactor to the exponen-
tial. The exponential dependence W(t ,r).exp
&"const(r/Dt$/2)2/(2"$)' in Eq. "38# holds in arbitrary di-
mensions d f , the only modification occurring in the prefac-
tor whose power of z change with the space dimension d f as
&83,81'

Wdf" t ,z #.
1

Dt$/2
1

zd f (1"$)/(2"$)

#exp#"& 1"
$

2 ' & $

2 ' $/(2"$)

z2/(2"$)' . "39#

The expression of N(t ,r!) can be obtained from W(t ,r!) using
the fractional Riemann-Liouville derivation "32# of order
&1"$' . Inserting expression "35# in Eq. "32# and using the
expression of the fractional Riemann-Liouville derivative
operator 0Dt

3 applied to an arbitrary power t*, i.e., 0Dt
3t*

!&%(1$*)/%(1$*"3)'t*"3, we obtain

N" t ,r! #!
c!"$

2Dt1"($/2) 0
k!0

1
""1 #kzk

k!%&"1"k #$/2' . "40#

Expression "40# can be used to evaluate N(t ,r!) for small z,
but the numerical evaluation of Eq. "40# is impossible for
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N! t ,r! "!
c!"#

D$t1"###/% &
m!0

#'

!"1 "mz1#m%
(!m%#1 "

(„!m#1 "#…

$cos!$2 !m%#1 "" . !56"

The asymptotics

(!m%#%#1 "(!m##1 "

(!m####1 "(!m%#1 "
)

(!m%#%#1 "(„!m#1 "#…
(„!m#2 "#…(!m%#1 "

)m%"# !57"

show that the series !55" and !56" exist only for %%# . It can
be shown that these series exist for all z in this case. This
series converges very slowly for large z but the Padé sum-
mation method *89+ can be used to improve the convergence
of Eq. !56" in the case %%# , and can also be used to esti-
mate Eq. !56" in the case %&# for which the series diverges.
The space integral ,drN(t ,r) over the whole one-

dimensional volume V, with N(t ,r) given by Eq. !56", recov-
ers the global Omori law

#
V
drN! t ,r ")

1
t1"#

. !58"

Note the nontrivial phenomenon in which the superposition
of all aftershock activities transforms the local Omori law or
‘‘bare propagator’’ !4" -(t))1/t1## into the global Omori
law or ‘‘dressed propagator’’ 1/t1"#. This effect was pre-
dicted in Refs. *25,26+ in the version of the ETAS model
without space dependence. These results are consistent with
the claim of Sec. II D, according to which all results reported
previously for the version of the ETAS model without space
dependence hold also for the version of the space-dependent
ETAS model studied here, when averaging over the whole
space.
The asymptotic behavior for $r!$'Dt#/% !i.e., z(1) and

%%# is obtained by keeping only the first nonzero term
(m!1) in Eq. !56" which is convergent for all z in the case
%%# ,

N! t ,r! "!

sin% $%

2 &
.c!$

(!1#%"

(!2#" % c!t & 1"2#% .

$r!$ & 1#%

for $r!$'Dt#/%. !59"

At fixed large $r!$ and for t%$r!/D$%/#, this predicts a local
Omori law with exponent p!1"2# .

2. 1Õz expansion of the solution

We use the theory of Fox functions *82+ to obtain N(t ,r!)
as an infinite series in 1/z . For this, we first rewrite expres-
sion !56" as a Fox function *82+,

N! t ,r! "!
c!"#

D%$t1"###/%

$R%H2,2
1,2! zei$/2'!1/% ,1/%",!1,1"

!1/% ,1/%",!#/%"##1,#/%"
" & ,
!60"

where R(z) indicates the real part of z.
The 1/z expansion of N(t ,r!) can be obtained using the

dual expansion of the Fox function !60" *expression !3.7.2"
of Ref. *82++

N! t ,r! "!
c"#

D$%t1"###/% &
m!0

#'

!"1 "m

$!%z1"%"m%
(„1"!m#1 "%…sin„!m#1 "%$/2…

(!"m#"

#
z"m

m!
$ cos!m$/2"

sin*!m#1 "$/%+(„#"!m#1 "#/%…" .
!61"

This expansion exists only for %&# *conditions of p. 71
below Eq. !3.7.2" of Ref. *82++. This is easily checked by the
behavior of an asymptotics similar to Eq. !57". Note that the
series !61" is not defined in the special case %!1 due to the
presence of the ill-defined ratio ((0)/((0) and a different
approach is required, such as the integral representation of
W(t ,r!) developed in Ref. *88+. The global Omori law ob-
tained by integrating over the whole space !61" is again
N(t))1/t1"#, as expected from the analysis of the ETAS
model without space dependence *26+.
Keeping only the largest term of Eq. !61" for large z, we

obtain the asymptotic behavior for small distances
r%Dt#/%,

N! t ,r "(
(!1"2%"sin!$%"sin!$#"

c!.$2

(!1##"

!r/."1"2%

1

! t/c!"1##

for %%0.5,

N! t ,r "(
c!"#

c!.%(!#"#/%"sin!$/%"

1

! t/c!"1"###/%

for 0.5%%%2. !62"

Note that for r%Dt#/% and 0.5%%%2, the leading behavior
of N(t ,r) is independent of r.
Equation !62" thus predicts an apparent exponent

p!1## for %%0.5,

p!1"###/% for 0.5%%%2, !63"

for small distances r%Dt#/%. This prediction is valid only in
the case %&# for which the series !61" is convergent. How-
ever, the same asymptotic results are also obtained by differ-
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𝑝 = 1 + 𝜃

𝑝 = 1 − 𝜃 +
𝜃
𝜇



θ=0.2, µ=0.2
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ent methods in the case !!" , for instance, expression #63$
is recovered for all !!2 using the integral representation of
Ref. %88&. The numerical evaluation of Eq. #56$, which con-
verges for !!" , also recovers the asymptotic results #62$.
The two regimes !!0.5 and 0.5!!!2 are illustrated in
Figs. 7 and 8, respectively. The seismicity rate N(t ,r!) is
evaluated from expression #56$ for small z and from expres-
sion #61$ for large z.
We also performed numerical simulations of the ETAS

and CTRW models and the results are in good agreement
with expressions #56$ and #61$ for N(r! ,t) for t"c and
r"d . For very small times t#c , or for very small distances
r#d , expressions #56$ and #61$ are not valid because they
are based on a long wavelength !k! !→0 and long time
'→0 approximation. Numerical simulations of the ETAS
model in the case "$0.2 and !$0.9 are presented in Fig. 9,
and are in good agreement with the analytical solutions #56$
and #61$ shown in Fig. 8 for the same parameters, except
from the truncation of N(t ,r) for times t#c and distances
r#d that are not reproduced by the analytical solution.

F. A simple nonseparable joint distribution of waiting times and
jump sizes: coupled spatial diffusion and long waiting

time distribution

Consider the choice for (mi
(t%t i ,r!%r! i) replacing Eq.

#2$ by

(mi# t%t i ,r!%r! i$$)#mi$*# t%t i$+# !r!%r! i!/!Dt $,
#64$

where )(mi) and *(t) are again given by Eqs. #3$ and #4$
while Eq. #5$ is changed into

+# !r!%r! i!/!Dt $$
1

!2Dt
exp#%!r!%r! i!2/Dt $. #65$

The spatial diffusion of seismic activity is now coupled to
the waiting time distribution. Expression #65$ captures the
effect that, in order for aftershocks to spread over large dis-
tances by the underlying physical process, they need time. In
fact, returning to the discussion in the Introduction on the
various proposed mechanisms for aftershocks, expression
#65$ embodies a microscopic diffusion process.
In this case, Eq. #21$ must be replaced by

N̂#' ,k! $$
ŜM#' ,k! $

1%n(̂#' ,k! $
, #66$

FIG. 6. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for a
numerical simulation of the ETAS model in the critical regime n
$1, with "$0.2, !$0.9, c!$1 day, and d$1 km. The solid line
is a fit of the data which gives an exponent H$0.25 in good agree-
ment with the predicted value H$0.22.

FIG. 7. Rate of seismicity N(t ,r) for "$0.2, !$0.2, c!$1
day, and ,$1 km, evaluated from expressions #56$ and #62$, plot-
ted as a function of the time #a$ for different values of the distance
r between the mainshock and its aftershocks, and #b$ as a function
of r for different values of the time between the mainshock and its
aftershocks. We stress again that the time scales shown here do not
necessarily correspond to real observable time scales but are pre-
sented to demonstrate clearly the existence of the two regimes. The
dashed lines give the predicted asymptotic dependence in each re-
gime.
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where !̂(" ,k! ) is the Laplace-Fourier transform of the prod-
uct #(t)$(!r!!/!Dt). For large times and long distances for
which the first terms in the expansion in " and k are suffi-
cient, and for n!1, we obtain

!̂%" ,k! &'
ŜM%" ,k! &

%""Dk2&(
. %67&

The inverse Laplace-Fourier transform of Eq. %66& is

N% t ,r! &)
1

t1#(

1
!2*Dt

exp%#!r!!2/Dt &. %68&

As expected, expression %68& recovers the dressed Omori
propagator in the case of absence of space dependence +26,.
At finite r and long times, the dressed Omori law also decay

as 1/t1#(. The diffusion of aftershocks is normal with the
standard diffusion exponent H!1/2.

V. NEW QUESTIONS ON AFTERSHOCKS DERIVED
FROM THE CTRW ANALOGY

We list a series of comments and questions suggested
from the analogy between the ETAS model and the CTRW
model. In particular, we discuss the possibility of defining

FIG. 8. Rate of seismicity N(t ,r) for (!0.2, -!0.9, c!!1
day, and .!1 km, evaluated from expressions %56& and %62&, plot-
ted as a function of the time %a& for different values of the distance
r between the mainshock and its aftershocks, and %b& as a function
of r for different values of the time between the mainshock and its
aftershocks. The dashed lines give the predicted asymptotic depen-
dence in each regime.

FIG. 9. Rate of seismicity N(t ,r) obtained from numerical
simulations of the ETAS model generated with the same parameters
as in Fig. 8 ((!0.2, -!0.9, c!!1 day, and d!1 km). N(r ,t) is
computed by averaging over 500 numerical realizations of the
ETAS model. %a& Aftershock rate as a function of the time from the
mainshock for several distances !r!! ranging from 0.01 to 104 km.
%b& Apparent Omori exponent measured for times t$10 as a func-
tion of the distance from the mainshock. The aftershock decay rate
%with time& is larger close to the mainshock epicenter than at large
distances from the mainshock. The asymptotic values for small and
large distances are in agreement with the predictions %63& for r
%Dt(/- and %59& for r&Dt(/-, which are shown as the horizontal
dashed lines. %c& Rate of seismicity N(t ,r) as a function of the
distance between aftershocks and mainshock for various times. The
theoretical prediction for large distances is shown as the dashed line
with slope #(1"-).
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ent methods in the case !!" , for instance, expression #63$
is recovered for all !!2 using the integral representation of
Ref. %88&. The numerical evaluation of Eq. #56$, which con-
verges for !!" , also recovers the asymptotic results #62$.
The two regimes !!0.5 and 0.5!!!2 are illustrated in
Figs. 7 and 8, respectively. The seismicity rate N(t ,r!) is
evaluated from expression #56$ for small z and from expres-
sion #61$ for large z.
We also performed numerical simulations of the ETAS

and CTRW models and the results are in good agreement
with expressions #56$ and #61$ for N(r! ,t) for t"c and
r"d . For very small times t#c , or for very small distances
r#d , expressions #56$ and #61$ are not valid because they
are based on a long wavelength !k! !→0 and long time
'→0 approximation. Numerical simulations of the ETAS
model in the case "$0.2 and !$0.9 are presented in Fig. 9,
and are in good agreement with the analytical solutions #56$
and #61$ shown in Fig. 8 for the same parameters, except
from the truncation of N(t ,r) for times t#c and distances
r#d that are not reproduced by the analytical solution.

F. A simple nonseparable joint distribution of waiting times and
jump sizes: coupled spatial diffusion and long waiting

time distribution

Consider the choice for (mi
(t%t i ,r!%r! i) replacing Eq.

#2$ by

(mi# t%t i ,r!%r! i$$)#mi$*# t%t i$+# !r!%r! i!/!Dt $,
#64$

where )(mi) and *(t) are again given by Eqs. #3$ and #4$
while Eq. #5$ is changed into

+# !r!%r! i!/!Dt $$
1

!2Dt
exp#%!r!%r! i!2/Dt $. #65$

The spatial diffusion of seismic activity is now coupled to
the waiting time distribution. Expression #65$ captures the
effect that, in order for aftershocks to spread over large dis-
tances by the underlying physical process, they need time. In
fact, returning to the discussion in the Introduction on the
various proposed mechanisms for aftershocks, expression
#65$ embodies a microscopic diffusion process.
In this case, Eq. #21$ must be replaced by

N̂#' ,k! $$
ŜM#' ,k! $

1%n(̂#' ,k! $
, #66$

FIG. 6. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for a
numerical simulation of the ETAS model in the critical regime n
$1, with "$0.2, !$0.9, c!$1 day, and d$1 km. The solid line
is a fit of the data which gives an exponent H$0.25 in good agree-
ment with the predicted value H$0.22.

FIG. 7. Rate of seismicity N(t ,r) for "$0.2, !$0.2, c!$1
day, and ,$1 km, evaluated from expressions #56$ and #62$, plot-
ted as a function of the time #a$ for different values of the distance
r between the mainshock and its aftershocks, and #b$ as a function
of r for different values of the time between the mainshock and its
aftershocks. We stress again that the time scales shown here do not
necessarily correspond to real observable time scales but are pre-
sented to demonstrate clearly the existence of the two regimes. The
dashed lines give the predicted asymptotic dependence in each re-
gime.
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which the first terms in the expansion in " and k are suffi-
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As expected, expression %68& recovers the dressed Omori
propagator in the case of absence of space dependence +26,.
At finite r and long times, the dressed Omori law also decay

as 1/t1#(. The diffusion of aftershocks is normal with the
standard diffusion exponent H!1/2.

V. NEW QUESTIONS ON AFTERSHOCKS DERIVED
FROM THE CTRW ANALOGY

We list a series of comments and questions suggested
from the analogy between the ETAS model and the CTRW
model. In particular, we discuss the possibility of defining

FIG. 8. Rate of seismicity N(t ,r) for (!0.2, -!0.9, c!!1
day, and .!1 km, evaluated from expressions %56& and %62&, plot-
ted as a function of the time %a& for different values of the distance
r between the mainshock and its aftershocks, and %b& as a function
of r for different values of the time between the mainshock and its
aftershocks. The dashed lines give the predicted asymptotic depen-
dence in each regime.

FIG. 9. Rate of seismicity N(t ,r) obtained from numerical
simulations of the ETAS model generated with the same parameters
as in Fig. 8 ((!0.2, -!0.9, c!!1 day, and d!1 km). N(r ,t) is
computed by averaging over 500 numerical realizations of the
ETAS model. %a& Aftershock rate as a function of the time from the
mainshock for several distances !r!! ranging from 0.01 to 104 km.
%b& Apparent Omori exponent measured for times t$10 as a func-
tion of the distance from the mainshock. The aftershock decay rate
%with time& is larger close to the mainshock epicenter than at large
distances from the mainshock. The asymptotic values for small and
large distances are in agreement with the predictions %63& for r
%Dt(/- and %59& for r&Dt(/-, which are shown as the horizontal
dashed lines. %c& Rate of seismicity N(t ,r) as a function of the
distance between aftershocks and mainshock for various times. The
theoretical prediction for large distances is shown as the dashed line
with slope #(1"-).
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The same decay is found at any fixed point r! for times
t!(!r!!/D)2/!. At all times, the same decay 1/t1"!/2 is also
obtained by measuring the aftershock seismicity in a local
box at a distance from the main shock origin increasing with
time as r"t!/2 #this is nothing but putting z#const in Eq.
$40%&. At large distances r!Dt!/2, the global decay law is
different from a power-law decay. Figure 4 shows that the
rate of aftershocks presents a truncation at early times, which
increases as the distance r increases. At large times, the rate
of aftershocks recovers the 1/t1"!/2 power-law decay $43%.
We stress that a fit of the global law N(r ,t) over the whole
time interval by an Omori law would yield an apparent ex-
ponent p$1"!/2 that decreases with r.
Integrating Eq. $40% over the whole one-dimensional

space, we recover the global Omori law,

N$ t %#" drN$ t ,r %"
1

t1"!
$44%

found in Refs. #25,26&. Thus, we have found an additional
source of variability of the exponent p of the Omori law: if
measured over the whole catalog, we should measure
p#1"! in the critical regime n#1 while p#1"!/2 is
slightly larger when measured in certain time and space-
windows, as described above. Thus, in this regime, pruning
of catalogs may lead to continuous change from the value
1"! to 1"!/2. In addition, as we have mentioned, the
crossover in time may lead to still smaller apparent expo-
nents, thus enhancing the impression of variability of the

exponent p. In reality, this range of p values are seen to result
from the complex spatiotemporal organization of the after-
shock seismicity of the ETAS model. These results should
lead us to be cautious when analyzing real catalogs with
respect to the conditions and regimes under which the analy-
sis is performed.
There is another observable that characterizes how an af-

tershock sequence invades space as a function of time. Ex-
pression $40% indeed predicts a subdiffusion process quanti-
fied by

'!r!!2("t2H, $45%

with H#!/2 since the natural variable is z given by Eq. $36%.
Indeed, expression $40% tells us that, up to a global rescaling
function of time, the rate of aftershocks is identical for a
fixed value of z. Thus, any aftershock structure diffuses ac-
cording to Eq. $45%.
This prediction is checked in Fig. 5 by numerical simula-

tions. 1000 synthetic catalogs have been generated with
)#3, !#0.2, and n#1. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock has been averaged over these 1000
simulations. The theoretical diffusion exponent is H#!/2
#0.1, in good agreement with the asymptotic behavior ob-
served in the numerical simulation. In practice, in order to
minimize the effect of fluctuations and optimize the speed of
convergence, we estimate numerically exp#'ln!r!!(& which is
also expected to scale as exp#'ln!r!!(&"t!/2 due to the simple
scaling form of Eq. $41%.
This problem has also been solved exactly in Ref. #84& in

the context of the so-called fractional Fokker-Planck equa-
tion, which amounts to replacing the distribution *(r!) of
jumps $5% by a Gaussian function. This fractional Fokker-
Planck equation allows one to introduce the possibility of
bias or drift in the CTRW and therefore in the aftershock
sequence.

D. Exponential waiting time distribution and long jump size
Lévy distribution „µË2…

This case with an exponential distribution

+$ t %#,e",t $46%

of waiting times with a Lévy distribution *(r!)#L)(!r!!) of
jump sizes with tail exponent )$2 has been investigated by
Budde et al. #85&. One finds

'!r!!2(1/2"t1/), $47%

corresponding to a superdiffusion regime with Hurst expo-
nent H#1/)!1/2. The full distribution function W(t ,r!) cor-
responding to the critical regime n#1 is known for ,t%1,

W$ t ,r! %-
1

$,t %1/)
L)# !r!!

$,t %1/)
$ . $48%

FIG. 5. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for nu-
merical simulations of the ETAS model in the critical regime
n#1, generated with the parameters !#0.2, d#1 km, )#3, and
c#10"3 day. The theoretical prediction for the diffusion exponent
is thus H#!/2#0.1. We observe a crossover from a larger expo-
nent at early times when the mean distance is close to the charac-
teristic scale d#1 km of the distribution of distances between an
aftershock and its progenitor, to a subdiffusion with an exponent
close to the theoretical prediction at large times. The solid line is a
fit of the numerical data for times t!10 days, which gives an ex-
ponent H#0.12 slightly larger than the predicted value H#0.1.
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slightly larger when measured in certain time and space-
windows, as described above. Thus, in this regime, pruning
of catalogs may lead to continuous change from the value
1"! to 1"!/2. In addition, as we have mentioned, the
crossover in time may lead to still smaller apparent expo-
nents, thus enhancing the impression of variability of the

exponent p. In reality, this range of p values are seen to result
from the complex spatiotemporal organization of the after-
shock seismicity of the ETAS model. These results should
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sis is performed.
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Indeed, expression $40% tells us that, up to a global rescaling
function of time, the rate of aftershocks is identical for a
fixed value of z. Thus, any aftershock structure diffuses ac-
cording to Eq. $45%.
This prediction is checked in Fig. 5 by numerical simula-

tions. 1000 synthetic catalogs have been generated with
)#3, !#0.2, and n#1. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock has been averaged over these 1000
simulations. The theoretical diffusion exponent is H#!/2
#0.1, in good agreement with the asymptotic behavior ob-
served in the numerical simulation. In practice, in order to
minimize the effect of fluctuations and optimize the speed of
convergence, we estimate numerically exp#'ln!r!!(& which is
also expected to scale as exp#'ln!r!!(&"t!/2 due to the simple
scaling form of Eq. $41%.
This problem has also been solved exactly in Ref. #84& in

the context of the so-called fractional Fokker-Planck equa-
tion, which amounts to replacing the distribution *(r!) of
jumps $5% by a Gaussian function. This fractional Fokker-
Planck equation allows one to introduce the possibility of
bias or drift in the CTRW and therefore in the aftershock
sequence.

D. Exponential waiting time distribution and long jump size
Lévy distribution „µË2…

This case with an exponential distribution
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FIG. 5. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for nu-
merical simulations of the ETAS model in the critical regime
n#1, generated with the parameters !#0.2, d#1 km, )#3, and
c#10"3 day. The theoretical prediction for the diffusion exponent
is thus H#!/2#0.1. We observe a crossover from a larger expo-
nent at early times when the mean distance is close to the charac-
teristic scale d#1 km of the distribution of distances between an
aftershock and its progenitor, to a subdiffusion with an exponent
close to the theoretical prediction at large times. The solid line is a
fit of the numerical data for times t!10 days, which gives an ex-
ponent H#0.12 slightly larger than the predicted value H#0.1.
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ent methods in the case !!" , for instance, expression #63$
is recovered for all !!2 using the integral representation of
Ref. %88&. The numerical evaluation of Eq. #56$, which con-
verges for !!" , also recovers the asymptotic results #62$.
The two regimes !!0.5 and 0.5!!!2 are illustrated in
Figs. 7 and 8, respectively. The seismicity rate N(t ,r!) is
evaluated from expression #56$ for small z and from expres-
sion #61$ for large z.
We also performed numerical simulations of the ETAS

and CTRW models and the results are in good agreement
with expressions #56$ and #61$ for N(r! ,t) for t"c and
r"d . For very small times t#c , or for very small distances
r#d , expressions #56$ and #61$ are not valid because they
are based on a long wavelength !k! !→0 and long time
'→0 approximation. Numerical simulations of the ETAS
model in the case "$0.2 and !$0.9 are presented in Fig. 9,
and are in good agreement with the analytical solutions #56$
and #61$ shown in Fig. 8 for the same parameters, except
from the truncation of N(t ,r) for times t#c and distances
r#d that are not reproduced by the analytical solution.

F. A simple nonseparable joint distribution of waiting times and
jump sizes: coupled spatial diffusion and long waiting

time distribution

Consider the choice for (mi
(t%t i ,r!%r! i) replacing Eq.

#2$ by

(mi# t%t i ,r!%r! i$$)#mi$*# t%t i$+# !r!%r! i!/!Dt $,
#64$

where )(mi) and *(t) are again given by Eqs. #3$ and #4$
while Eq. #5$ is changed into

+# !r!%r! i!/!Dt $$
1

!2Dt
exp#%!r!%r! i!2/Dt $. #65$

The spatial diffusion of seismic activity is now coupled to
the waiting time distribution. Expression #65$ captures the
effect that, in order for aftershocks to spread over large dis-
tances by the underlying physical process, they need time. In
fact, returning to the discussion in the Introduction on the
various proposed mechanisms for aftershocks, expression
#65$ embodies a microscopic diffusion process.
In this case, Eq. #21$ must be replaced by

N̂#' ,k! $$
ŜM#' ,k! $

1%n(̂#' ,k! $
, #66$

FIG. 6. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for a
numerical simulation of the ETAS model in the critical regime n
$1, with "$0.2, !$0.9, c!$1 day, and d$1 km. The solid line
is a fit of the data which gives an exponent H$0.25 in good agree-
ment with the predicted value H$0.22.

FIG. 7. Rate of seismicity N(t ,r) for "$0.2, !$0.2, c!$1
day, and ,$1 km, evaluated from expressions #56$ and #62$, plot-
ted as a function of the time #a$ for different values of the distance
r between the mainshock and its aftershocks, and #b$ as a function
of r for different values of the time between the mainshock and its
aftershocks. We stress again that the time scales shown here do not
necessarily correspond to real observable time scales but are pre-
sented to demonstrate clearly the existence of the two regimes. The
dashed lines give the predicted asymptotic dependence in each re-
gime.
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and are in good agreement with the analytical solutions #56$
and #61$ shown in Fig. 8 for the same parameters, except
from the truncation of N(t ,r) for times t#c and distances
r#d that are not reproduced by the analytical solution.
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effect that, in order for aftershocks to spread over large dis-
tances by the underlying physical process, they need time. In
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FIG. 6. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for a
numerical simulation of the ETAS model in the critical regime n
$1, with "$0.2, !$0.9, c!$1 day, and d$1 km. The solid line
is a fit of the data which gives an exponent H$0.25 in good agree-
ment with the predicted value H$0.22.

FIG. 7. Rate of seismicity N(t ,r) for "$0.2, !$0.2, c!$1
day, and ,$1 km, evaluated from expressions #56$ and #62$, plot-
ted as a function of the time #a$ for different values of the distance
r between the mainshock and its aftershocks, and #b$ as a function
of r for different values of the time between the mainshock and its
aftershocks. We stress again that the time scales shown here do not
necessarily correspond to real observable time scales but are pre-
sented to demonstrate clearly the existence of the two regimes. The
dashed lines give the predicted asymptotic dependence in each re-
gime.
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where !̂(" ,k! ) is the Laplace-Fourier transform of the prod-
uct #(t)$(!r!!/!Dt). For large times and long distances for
which the first terms in the expansion in " and k are suffi-
cient, and for n!1, we obtain

!̂%" ,k! &'
ŜM%" ,k! &

%""Dk2&(
. %67&

The inverse Laplace-Fourier transform of Eq. %66& is

N% t ,r! &)
1

t1#(

1
!2*Dt

exp%#!r!!2/Dt &. %68&

As expected, expression %68& recovers the dressed Omori
propagator in the case of absence of space dependence +26,.
At finite r and long times, the dressed Omori law also decay

as 1/t1#(. The diffusion of aftershocks is normal with the
standard diffusion exponent H!1/2.

V. NEW QUESTIONS ON AFTERSHOCKS DERIVED
FROM THE CTRW ANALOGY

We list a series of comments and questions suggested
from the analogy between the ETAS model and the CTRW
model. In particular, we discuss the possibility of defining

FIG. 8. Rate of seismicity N(t ,r) for (!0.2, -!0.9, c!!1
day, and .!1 km, evaluated from expressions %56& and %62&, plot-
ted as a function of the time %a& for different values of the distance
r between the mainshock and its aftershocks, and %b& as a function
of r for different values of the time between the mainshock and its
aftershocks. The dashed lines give the predicted asymptotic depen-
dence in each regime.

FIG. 9. Rate of seismicity N(t ,r) obtained from numerical
simulations of the ETAS model generated with the same parameters
as in Fig. 8 ((!0.2, -!0.9, c!!1 day, and d!1 km). N(r ,t) is
computed by averaging over 500 numerical realizations of the
ETAS model. %a& Aftershock rate as a function of the time from the
mainshock for several distances !r!! ranging from 0.01 to 104 km.
%b& Apparent Omori exponent measured for times t$10 as a func-
tion of the distance from the mainshock. The aftershock decay rate
%with time& is larger close to the mainshock epicenter than at large
distances from the mainshock. The asymptotic values for small and
large distances are in agreement with the predictions %63& for r
%Dt(/- and %59& for r&Dt(/-, which are shown as the horizontal
dashed lines. %c& Rate of seismicity N(t ,r) as a function of the
distance between aftershocks and mainshock for various times. The
theoretical prediction for large distances is shown as the dashed line
with slope #(1"-).
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ponent equal to 2 in three dimensions.
Note that the results of Ref. !93" are obtained for random

walks on a lattice. This can easily be converted into a CTRW
by the fact that a CTRW is nothing by a process subordinated
to discrete random walks under the operational time defined
by the process #t i$ of the time of just arrival to a given site,
as given by Eq. %69&.

VI. DISCUSSION

Using the analogy between the ETAS model and the
CTRW model established here, we have derived the relation
between the average distance between aftershocks and the
mainshock as a function of the time from the mainshock, and
the joint probability distribution of the times and locations of
aftershocks.
We have assumed that each earthquake triggers after-

shocks at a distance r and time t according to the bare propa-
gator '(r ,t), which can be factorized as ((t))(r). This
means that the distribution )(r) of the distances between an
event and its direct aftershocks is decoupled from the distri-
bution ((t) of waiting time. Hence, the direct aftershocks
triggered by a single mainshock do not diffuse in space with
time. Notwithstanding this decoupling in space and time of
the bare propagator '(r ,t), we have shown that the global
law or dressed propagator N(t ,r!) defined as the global rate
of events at time t and at position r! , cannot be factorized into
two distributions of waiting times and space jumps. This
joint distribution of waiting times and positions of the whole
sequence of aftershocks cascading from a mainshock is dif-
ferent from the product of the bare time and space propaga-
tors.
The mean distance between the mainshock and its after-

shocks, including secondary aftershocks, increases with the
time from the mainshock, due to the cascade process of af-
tershocks triggering aftershocks triggering aftershocks, and
so on. In the critical case n!1, this diffusion takes the form
of a power-law relation R*tH of the average distance R
between aftershocks and the mainshock, as a function of the
time t from the mainshock. If the local Omori law is charac-
terized by an exponent 0"+"1, and if the space jumps
follow a power law )(r)*1/(r#d)1#,, the diffusion expo-
nent is given by H!+/, in the case ,"2 and H!+/2 in the
case ,$2. Depending on the + and , values, we can thus
observe either subdiffusion (H"1/2) or superdiffusion
(H$1/2), as summarized in Fig. 10. In the subcritical
(n"1) and supercritical (n$1) regimes, this relation is still
valid up to the characteristic time t* given by Eq. %1& and for
distances smaller than r*-Dt*H given by Eq. %30&. For
t$t* and r$r* in the subcritical regime, the global distri-
butions of times and distances between the mainshock and its
aftershocks are decoupled and there is therefore no diffusion.
In the supercritical regime, the aftershock rate increases ex-
ponentially for t$t* and the aftershocks diffuses more rap-
idly than before t*.
In the critical regime, the cascade of secondary after-

shocks introduces a variation of the apparent Omori expo-
nent as a function of the distance from the mainshock. The

asymptotic values of the Omori exponent in the different
regimes are summarized in Table II. In the regime ,"2, we
observe a transition from an Omori law decay with an expo-
nent p!1%2+ at early times tH&r/D to a larger exponent
at large times. This provides another mechanism to explain
the observed variability of the Omori exponent. In the re-
gime ,$2, a power-law decay of the seismicity with time is
observed only at large times tH'r/D . At early times, or at
large distances r'DtH, the seismicity rate is very small,
because the seismicity has not yet diffused up to the distance
r.
We should emphasize that our theoretical analysis of af-

tershock diffusion predicts the behavior of the ensemble av-
erage of aftershock sequences. Individual sequences may de-
part from this ensemble average, especially for sequences
with few earthquakes and limited durations. For long se-
quences %20 000 events say&, we have verified that the expo-
nent H measured on individual sequences does not deviate
from the ensemble average value by more than about 20%.
As already discussed, the impact of fluctuations becomes,
however, more effective as the parameter . increases above
b/2.

FIG. 10. Classification of the different regime of the diffusion of
aftershocks in space as a function of time from the main shock. The
bare Omori law for aftershocks decay with time as 1/t1#+. The
jump size distribution between the earthquake ‘‘mother’’ and its
‘‘daughters’’ is proportional to 1/r1#,. R(t) is the average distance
between all aftershocks triggered up to time t after the mainshock.

TABLE II. Asymptotic values of the %renormalized& Omori ex-
ponent %of the dressed propagator& in the different regimes for
z&1 and z'1, where z/DtH/r .

Large z Small z
(r&DtH) (r'DtH)

,"0.5 p!1#+ p!1%2+
0.50,"2 p!1%+#+/, p!1%2+
20, p!1%+/2 Not defined a

aThe Omori exponent is not defined in this case because the depen-
dence of N(t ,r!) with respect to time given by expression %42& and
represented in Fig. 4 has a contribution from the exponential as-
ymptotics which is different from a power law for large distances
r'DtH.
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according to the nonstationary Poisson process of conditional
intensity !(t), and its magnitude is chosen according to the
Gutenberg-Richter distribution with parameter b. To deter-
mine the position in space of this new event, we first choose
its mother randomly among all preceding events with a prob-
ability proportional to their rate of aftershocks "mi

(t!t i)
evaluated at the time of the new event. Once the mother has
been chosen, we generate the distance r between the new
earthquake and its mother according to the power-law distri-
bution #(r!) given by Eq. $5%. The location of the new event
is determined by assuming an isotropic distribution of after-
shocks. By this rule, it is clear that new events tend to be
close, in general, to the last large earthquakes, leading to
space clustering.
Note that this two-steps procedure is equivalent to but

more convenient for a numerical implementation than the
one-step method, consisting of calculating at each point on a
fine space-covering grid the seismic rate, equal to the sum
over all preceding mothers weighted by the bare space #(r!)
and time &(t) propagators given by Eqs. $5% and $4%; after
normalizing, these rates then provide to each grid point a
probability for the event to occur on that point. The equiva-
lence between our two-step procedure and the direct calcu-
lation of the seismic rates is based on the law of conditional
probabilities: 'probability of next event $A%("'probability of
next event conditioned on its mother $event B%#'probability
of choosing the mother(, i.e., P(A ,B)"P(A!B)P(B).
Figure 1 shows the result of a numerical simulation of the

ETAS model which exhibits a diffusion of the seismic activ-
ity. We simulate a sequence of aftershocks and secondary

aftershocks starting from a mainshock of magnitude M"7,
with the following parameters: )"0.2, b"1, *"0.5, n
"1, and +"1. At early times, aftershocks are localized
close to the mainshock, and then diffuse and cluster close to
the largest aftershocks. This $sub-%diffusion is extremely
slow, as we shall quantify in the sequel. Our purpose is to
provide a theory for this process based on the ETAS model.
This theory will be tested by numerical simulations.
The different regimes are illustrated in Fig. 2, which

shows the seismicity rate N(t) for the temporal ETAS model
studied in Refs. '25,26( obtained by summing the seismic
activity over all space for the three cases n$1 $subcritical%,
n"1 $critical%, and n%1 $supercritical%. The subcritical re-
gime is characterized by the existence of the time scale t*
given by Eq. $1%. There is no difference between the critical
case n"1 and the subcritical case for t$t* $see Fig. 2%.
Indeed, the difference between the subcritical regime and the
critical regime can be observed only for t%t*. A simple way

FIG. 2. Seismicity rate N(t) for the temporal ETAS model cal-
culated for )"0.3 and c"0.001 day. The local law "(t),1/t1&),
which gives the probability distribution of times between an event
and its $first-generation% aftershocks is shown as a dashed line. The
global law N(t), which includes all secondary and successive after-
shocks generated by all the aftershocks of the first event, is shown
as a solid line for the three regimes, n$1, n"1, and n%1. In the
critical regime n"1, the seismicity rate follows a renormalized or
dressed Omori law ,1/tp for t%c with an exponent p"1!) ,
smaller than the exponent of the local law 1&) . In the subcritical
regime (n$1), there is a crossover from an Omori law 1/t1!) for
t$t* to 1/t1&) for t%t*. In the supercritical regime (n%1), there
is a crossover from an Omori law 1/t1!) for t$t* to an exponential
increase N(t)-exp(t/t*) for t%t*. We have chosen on purpose
values of n"0.9997$1 and n"1.0003%1 very close to 1 such that
the crossover time t*"109 days given by Eq. $1% is very large. In
real data, such large t* would be undistinguishable from an infinite
value corresponding to the critical regime n"1. This representation
is chosen for pedagogical purpose to make clear the different re-
gimes occurring at times smaller and larger than t*. In reality, we
can expect n to be significantly smaller or larger than 1, such that
t* becomes maybe of the order of months, years, or decades and the
observed Omori law will thus lie in the crossover regime, given an
apparent Omori exponent anywhere from 1!) to 1&) .

FIG. 1. Maps of seismicity generated by the ETAS model with
parameters b"1, )"0.2, +"1, d"1 km, *"0.5, c"0.001
day, and a branching ratio n"1. The mainshock occurs at the origin
of space with magnitude M"7. The minimum magnitude is fixed
at m0"0. The distances between mainshock and aftershocks follow
a power law with parameter +"1 and the local $or bare% Omori’s
law is ,1/t1&). According to the theory developed in the text, the
average distance between the first mainshock and the aftershocks is
thus expected to grow as R-tH with H"0.2 'Eq. $58%(. The two
plots are for different time periods of the same numerical simula-
tion, such that the same number of earthquakes N"3000 is ob-
tained for each graph. $a% Time between 0 and 0.3 days; $b% time
between 30 and 70 yr. Real aftershock sequences are indeed ob-
served to last decades up to a century. Large black dots indicate
large aftershocks around which other secondary aftershocks cluster.
The mainshock is shown by a black star. At early times, aftershocks
are localized close to the mainshock, and then diffuse and cluster
around the largest aftershocks.
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ETAS predicts that seismic diffusion or 
subdiffusion occurs and should be 
observable only when the observed 
Omori exponent is less than 1.
however, it is difficult to test on 
seismicity data. 
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ponent equal to 2 in three dimensions.
Note that the results of Ref. !93" are obtained for random

walks on a lattice. This can easily be converted into a CTRW
by the fact that a CTRW is nothing by a process subordinated
to discrete random walks under the operational time defined
by the process #t i$ of the time of just arrival to a given site,
as given by Eq. %69&.

VI. DISCUSSION

Using the analogy between the ETAS model and the
CTRW model established here, we have derived the relation
between the average distance between aftershocks and the
mainshock as a function of the time from the mainshock, and
the joint probability distribution of the times and locations of
aftershocks.
We have assumed that each earthquake triggers after-

shocks at a distance r and time t according to the bare propa-
gator '(r ,t), which can be factorized as ((t))(r). This
means that the distribution )(r) of the distances between an
event and its direct aftershocks is decoupled from the distri-
bution ((t) of waiting time. Hence, the direct aftershocks
triggered by a single mainshock do not diffuse in space with
time. Notwithstanding this decoupling in space and time of
the bare propagator '(r ,t), we have shown that the global
law or dressed propagator N(t ,r!) defined as the global rate
of events at time t and at position r! , cannot be factorized into
two distributions of waiting times and space jumps. This
joint distribution of waiting times and positions of the whole
sequence of aftershocks cascading from a mainshock is dif-
ferent from the product of the bare time and space propaga-
tors.
The mean distance between the mainshock and its after-

shocks, including secondary aftershocks, increases with the
time from the mainshock, due to the cascade process of af-
tershocks triggering aftershocks triggering aftershocks, and
so on. In the critical case n!1, this diffusion takes the form
of a power-law relation R*tH of the average distance R
between aftershocks and the mainshock, as a function of the
time t from the mainshock. If the local Omori law is charac-
terized by an exponent 0"+"1, and if the space jumps
follow a power law )(r)*1/(r#d)1#,, the diffusion expo-
nent is given by H!+/, in the case ,"2 and H!+/2 in the
case ,$2. Depending on the + and , values, we can thus
observe either subdiffusion (H"1/2) or superdiffusion
(H$1/2), as summarized in Fig. 10. In the subcritical
(n"1) and supercritical (n$1) regimes, this relation is still
valid up to the characteristic time t* given by Eq. %1& and for
distances smaller than r*-Dt*H given by Eq. %30&. For
t$t* and r$r* in the subcritical regime, the global distri-
butions of times and distances between the mainshock and its
aftershocks are decoupled and there is therefore no diffusion.
In the supercritical regime, the aftershock rate increases ex-
ponentially for t$t* and the aftershocks diffuses more rap-
idly than before t*.
In the critical regime, the cascade of secondary after-

shocks introduces a variation of the apparent Omori expo-
nent as a function of the distance from the mainshock. The

asymptotic values of the Omori exponent in the different
regimes are summarized in Table II. In the regime ,"2, we
observe a transition from an Omori law decay with an expo-
nent p!1%2+ at early times tH&r/D to a larger exponent
at large times. This provides another mechanism to explain
the observed variability of the Omori exponent. In the re-
gime ,$2, a power-law decay of the seismicity with time is
observed only at large times tH'r/D . At early times, or at
large distances r'DtH, the seismicity rate is very small,
because the seismicity has not yet diffused up to the distance
r.
We should emphasize that our theoretical analysis of af-

tershock diffusion predicts the behavior of the ensemble av-
erage of aftershock sequences. Individual sequences may de-
part from this ensemble average, especially for sequences
with few earthquakes and limited durations. For long se-
quences %20 000 events say&, we have verified that the expo-
nent H measured on individual sequences does not deviate
from the ensemble average value by more than about 20%.
As already discussed, the impact of fluctuations becomes,
however, more effective as the parameter . increases above
b/2.

FIG. 10. Classification of the different regime of the diffusion of
aftershocks in space as a function of time from the main shock. The
bare Omori law for aftershocks decay with time as 1/t1#+. The
jump size distribution between the earthquake ‘‘mother’’ and its
‘‘daughters’’ is proportional to 1/r1#,. R(t) is the average distance
between all aftershocks triggered up to time t after the mainshock.

TABLE II. Asymptotic values of the %renormalized& Omori ex-
ponent %of the dressed propagator& in the different regimes for
z&1 and z'1, where z/DtH/r .

Large z Small z
(r&DtH) (r'DtH)

,"0.5 p!1#+ p!1%2+
0.50,"2 p!1%+#+/, p!1%2+
20, p!1%+/2 Not defined a

aThe Omori exponent is not defined in this case because the depen-
dence of N(t ,r!) with respect to time given by expression %42& and
represented in Fig. 4 has a contribution from the exponential as-
ymptotics which is different from a power law for large distances
r'DtH.
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where !̂(" ,k! ) is the Laplace-Fourier transform of the prod-
uct #(t)$(!r!!/!Dt). For large times and long distances for
which the first terms in the expansion in " and k are suffi-
cient, and for n!1, we obtain

!̂%" ,k! &'
ŜM%" ,k! &

%""Dk2&(
. %67&

The inverse Laplace-Fourier transform of Eq. %66& is

N% t ,r! &)
1

t1#(

1
!2*Dt

exp%#!r!!2/Dt &. %68&

As expected, expression %68& recovers the dressed Omori
propagator in the case of absence of space dependence +26,.
At finite r and long times, the dressed Omori law also decay

as 1/t1#(. The diffusion of aftershocks is normal with the
standard diffusion exponent H!1/2.

V. NEW QUESTIONS ON AFTERSHOCKS DERIVED
FROM THE CTRW ANALOGY

We list a series of comments and questions suggested
from the analogy between the ETAS model and the CTRW
model. In particular, we discuss the possibility of defining

FIG. 8. Rate of seismicity N(t ,r) for (!0.2, -!0.9, c!!1
day, and .!1 km, evaluated from expressions %56& and %62&, plot-
ted as a function of the time %a& for different values of the distance
r between the mainshock and its aftershocks, and %b& as a function
of r for different values of the time between the mainshock and its
aftershocks. The dashed lines give the predicted asymptotic depen-
dence in each regime.

FIG. 9. Rate of seismicity N(t ,r) obtained from numerical
simulations of the ETAS model generated with the same parameters
as in Fig. 8 ((!0.2, -!0.9, c!!1 day, and d!1 km). N(r ,t) is
computed by averaging over 500 numerical realizations of the
ETAS model. %a& Aftershock rate as a function of the time from the
mainshock for several distances !r!! ranging from 0.01 to 104 km.
%b& Apparent Omori exponent measured for times t$10 as a func-
tion of the distance from the mainshock. The aftershock decay rate
%with time& is larger close to the mainshock epicenter than at large
distances from the mainshock. The asymptotic values for small and
large distances are in agreement with the predictions %63& for r
%Dt(/- and %59& for r&Dt(/-, which are shown as the horizontal
dashed lines. %c& Rate of seismicity N(t ,r) as a function of the
distance between aftershocks and mainshock for various times. The
theoretical prediction for large distances is shown as the dashed line
with slope #(1"-).
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ent methods in the case !!" , for instance, expression #63$
is recovered for all !!2 using the integral representation of
Ref. %88&. The numerical evaluation of Eq. #56$, which con-
verges for !!" , also recovers the asymptotic results #62$.
The two regimes !!0.5 and 0.5!!!2 are illustrated in
Figs. 7 and 8, respectively. The seismicity rate N(t ,r!) is
evaluated from expression #56$ for small z and from expres-
sion #61$ for large z.
We also performed numerical simulations of the ETAS

and CTRW models and the results are in good agreement
with expressions #56$ and #61$ for N(r! ,t) for t"c and
r"d . For very small times t#c , or for very small distances
r#d , expressions #56$ and #61$ are not valid because they
are based on a long wavelength !k! !→0 and long time
'→0 approximation. Numerical simulations of the ETAS
model in the case "$0.2 and !$0.9 are presented in Fig. 9,
and are in good agreement with the analytical solutions #56$
and #61$ shown in Fig. 8 for the same parameters, except
from the truncation of N(t ,r) for times t#c and distances
r#d that are not reproduced by the analytical solution.

F. A simple nonseparable joint distribution of waiting times and
jump sizes: coupled spatial diffusion and long waiting

time distribution

Consider the choice for (mi
(t%t i ,r!%r! i) replacing Eq.

#2$ by

(mi# t%t i ,r!%r! i$$)#mi$*# t%t i$+# !r!%r! i!/!Dt $,
#64$

where )(mi) and *(t) are again given by Eqs. #3$ and #4$
while Eq. #5$ is changed into

+# !r!%r! i!/!Dt $$
1

!2Dt
exp#%!r!%r! i!2/Dt $. #65$

The spatial diffusion of seismic activity is now coupled to
the waiting time distribution. Expression #65$ captures the
effect that, in order for aftershocks to spread over large dis-
tances by the underlying physical process, they need time. In
fact, returning to the discussion in the Introduction on the
various proposed mechanisms for aftershocks, expression
#65$ embodies a microscopic diffusion process.
In this case, Eq. #21$ must be replaced by

N̂#' ,k! $$
ŜM#' ,k! $

1%n(̂#' ,k! $
, #66$

FIG. 6. Average distance between the first mainshock and its
aftershocks as a function of the time from the mainshock, for a
numerical simulation of the ETAS model in the critical regime n
$1, with "$0.2, !$0.9, c!$1 day, and d$1 km. The solid line
is a fit of the data which gives an exponent H$0.25 in good agree-
ment with the predicted value H$0.22.

FIG. 7. Rate of seismicity N(t ,r) for "$0.2, !$0.2, c!$1
day, and ,$1 km, evaluated from expressions #56$ and #62$, plot-
ted as a function of the time #a$ for different values of the distance
r between the mainshock and its aftershocks, and #b$ as a function
of r for different values of the time between the mainshock and its
aftershocks. We stress again that the time scales shown here do not
necessarily correspond to real observable time scales but are pre-
sented to demonstrate clearly the existence of the two regimes. The
dashed lines give the predicted asymptotic dependence in each re-
gime.
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large z. In order to obtain the asymptotic behavior of N(t ,r!),
expression !40" can be rewritten as a Fox function #82$,

N! t ,r! "!
c!"%

2Dt1"(%/2)H1,1
1,0!1z "!%/2,%/2"

!0,1" # . !41"

Employing again the standard theorem of the Fox function
#Eq. !1.6.3" of Ref. #82$", the asymptotic behavior of N(t ,r)
for large distances r such that r#Dt%/2 is given by

N! t ,r "&
c!"%

Dt1"(%/2) $ %r!%

Dt%/2&
(1"%)/(2"%)

$exp!"$ 1"
%

2 & $ %

2 & %/(2"%)$ %r!%

Dt%/2&
2/(2"%)# .

!42"

The exponential dependence N(t ,r)&exp
#"const(r/Dt%/2)2/2"%$ in Eq. !42" holds in arbitrary dimen-
sions.
This expression becomes incorrect for very large dis-

tances because it would predict an exponential or slightly
superexponential decay with r. This cannot be true as the
global law cannot decay faster than the local law !5". The
reason for Eq. !42" to become incorrect at large distances is
that the expansion of N̂(' ,k! ) for small %k! % !large distances"
given by Eq. !34" has been truncated at the order k2. There
is, however, a subdominant term (k) that describes the
power-law tail of the local law !5" and also of the global law
asymptotically. A similar situation occurs in the application
of the central limit theorem for sums of N random variables
with power-law distributions with exponents )#2 #12$: the
distribution of the sum S is a Gaussian in its bulk for
%S%%!N lnN and crosses over to a power law with tail ex-
ponent ) for larger S. In a similar way, the crossover of
N(t ,r) to the asymptotic local power law !5" can be recov-
ered by an analysis including the subleading correction (k)

to the expansion !34".
Expression !40" shows that the global rate of seismicity

cannot be factorized as a product of a distribution of times
and a distribution of distances. This space-time coupling im-
plies that the seismic activity diffuses with time, and that the
decay of the rate of aftershocks depends on the distance from
the first mainshock. This coupling of space and time stems
from the cascade of aftershocks, from the primary after-
shocks to the secondary aftershocks to the tertiary after-
shocks, and so on.
Figure 4 presents the decay of the seismic activity N(r ,t)

obtained using expression !40" for small z and expression
!42" for large z, as a function of the time from the mainshock
and as a function of the distances r. Close to the mainshock
epicenter, expression !40" predicts that the global seismicity
rate decays with time as the renormalized Omori law

N! t ,0"&
1

t1"%/2 . !43"

FIG. 4. Rate of seismicity N(t ,r) in the critical regime n!1 for
%!0.2, )#2, c!!1 day, and *!1 km, evaluated from expres-
sions !40" and !42", plotted as a function of the time !a" for different
values of the distance r between the mainshock and its aftershocks,
and !b",!c" as a function of r #logarithmic scale for r in !b" and
linear scale for r in !c"$ for different values of the time between the
mainshock and its aftershocks. The temporal decay of seismicity
with time is characterized by a power-law decay N(r ,t)&1/t1"%/2

close to the mainshock epicenter or at large times for r&Dt%/2. For
large distances r'Dt%/2, there is a truncation of the power-law
decay at early times t%/2&r/D , because the seismicity has not yet
diffused up to the distance r. Although the distribution of distances
between a mainshock and its direct aftershocks +(r) follows a
power-law distribution with exponent 1() , the log-linear graph
!c" shows that the global rate of aftershocks N(r! ,t) decreases ap-
proximately exponentially as a function of the distance from the
mainshock, with a characteristic distance that increases with time.
This is in agreement with expression !42" that predicts N(t ,r)
&exp#(%r!%/Dt%/2)2/(2"%)$ , i.e., N(t ,r)&exp#C(t)%r!%q$ with an expo-
nent q!2/(2"%) close to 1 within the exponential. The same re-
mark as for Fig. 2 applies: the representation of our predictions for
very large times is made for pedagogical purpose to illustrate
clearly the different regimes.
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Comparison to related research
• Noir et al., 1997 (1989 DobiEQ sequence)

H =0.5 due to fluid transfer

• Tajima & Kanamori, 1985 (subduction zone)
logarithmic or H=0.1diffusion

• Shaw, 1993 (California)
no diffusion and p~1 ← 𝜃 ~ 0, very small H ?

• Dieterich, 1994 (RSF law)
aftershock zone expand but not grow as power law.

• Marsan et al, 2000 (several catalogs)
H=0.2 ← apparent diffusion due to their analysis method (counting 
uncorrelated events )

• Sotolongo-Costa et al., 2000 (microearthquakes in Spain)
interpreted sequence of earthquakes as a random walk process
↑ different from this paper ( identify sequence as a single CTRW )
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7. Conclusion

cascade of aftershock induce aftershock diffusion. 

• correspondence between ETAS and CTRW 

• different regimes of diffusion

• seismic diffusion occur and should be observed only when p <1 and 
t<t*

• No anomalous stress diffusion is needed.
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