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In these series of paper, authors derive many of empirical laws of
earthquake by ETAS model.

® Sornette and Sornette, 1999
® Helmstetter and Sornette, 2002a
® Sornette and Helmstetter, 2002

In this paper [Helmstetter and Sornette, 2002b], we
investigate aftershock diffusion.



Aftershock diffusion
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Why diffuse ?

* Viscous relaxation process (Rydelek and Sacks, 2001)

¢ Fhlld transfer (Noir et al, 1997 , Nur and Booker, 1972, Hudnut et al, 1989)

« Rate and State friction’s law and non-uniform stress ( bicterich, 1994)

- Cascade process : Large aftershocks reproduce their secondary
aftershocks close to them. ( this paper)



Flow

2. The ETAS model

Formulate ETAS model and refer the property of the model.
Numerical simulation.

3. Mapping of the ETAS model on the CTRW model

Derive the master equation of ETAS.
Establish a correspondence between the ETAS model and the CTRW  (Continuous
Time Random Walk model).

4. critical regime n=1

Derive the joint probability distribution N(t,r)

Calculate the average distance between mainshock and its aftershock R as a power
law function of elapsed time. (R~t"H)

6. Discussion
Summarize result of different regime
Comparison to related study

7. Conclusion
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2. The ETAS model

Formulate ETAS model and refer the property of the model.
Numerical simulation.



ETAS Model

b (1= 11 7= 1) =p(m)W (1= 1)D(r=r,).

m; : magnitude r; : positon ¢; : time

‘bare propagator’ = seismic rate directly induced by a single ‘mother’ i

(1) Large earthquake reproduce many aftershocks.
p(m;)=K10%0m=m0),

(2) Normalized waiting time distribution = ‘bare’ omori’s law
¢

C
V(r)= H(t),
( ) (t+c)1+9 ( ) 6 > 0,H(t) is Heaviside function

(3) Normalized spatial ‘jump’ distribution = isotropic elastic Green function dependence

7

D(r)=

I+pupo

Ny

u>0

d + 1

x|
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a and b

event-size distribution = GR law number of daughter

P(m)=bIn(10)10"2»=m0) (6 p(m;)=K10%"""0), ()

a > b :large event dominate earthquake triggering
a < b :small event dominate earthquake triggering

recent reanalysis of seismic catalogs indicates « < b and a =0.8
(Helmstetter, 2003)

but case of a >0.5 is difficult to analyze (infinite variance p(m))

therefore our model uses b = 1, a =0.5
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branching ratio n (Helmstetter & Sornette, 2002a)

n : average # of daughter created per mother event (summed by all possible magnitude)

> +o +o > -
nzf er dtJ dm;P(m;)¢,, (t—t;, . r—r;)
t; mg !

+oo Kb
- Jm() dm;P(m;)p(m;)= h—a’
due to cascades of aftershocks, total # of event is larger by the factor 1/(1-n) ~ 10

— n 1s a branching parameter

n <1 : subcritical regime (finally die out)
n > 1 : supercritical regime (exponentially increase)
n =1 : critical regime (border between birth and death)



n is branching parameter
all aftershock

p=1-—-6
T 5 0 | |
e | n=1.0003
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I

t<t* all regime behave identically
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Numerical simulation : method (0gata, 1998 & 1999)

 initial condition
t=0 =0 M7 event occur

 algorithm
decide time of next event by nonstationary poisson process (8)

Oc?
N(#)= D, K10%mi=mo) :
=t (t—t,+c)' ™

— decide magnitude by GR law
— select mother in all preceding events by (2) ¢, (1—1,.7—r)=p(m)¥ (1= 1) (7—7,).

— decide location of new event by (5) &)= %
d|
d

* parameter set
0=02b=1a=05n=1,u=1my=0,d = 1km,c = 0.001day



Numerical simulation : Result
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considerable diffusion occurs




[30,70] yrs : fractal distribution

y (km)
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reported active fault system: D =[1.65:1.95]
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3. Mapping of the ETAS model on
the CTRW model

Derive the master equation of ETAS.
Establish a correspondence between the ETAS model and the CTRW
(Continuous Time Random Walk model).



From direct Omori’s law To renormalized Omori’s law

direct Omori law

B li— 11 F— ) = plmomY W (1= 1)@(F—7y,  @-mother (my 7, &)

p(m;—m)=nlIn(10)(b— a) 10%"i=m0) 10~ b(n=mo) b —m(E—1; ;5 =)
daughter(m,r,t) @

renormalized Omori law

source term (mainshock must occur att = 0)
N (1, 1) O S(¢.r.m)=06(t)6(m—M)é(r),

N, (1 5 =S(t.Fm)+ j i J i’
mg

t . .
‘ XJ dre,, ,(t—70r—r" )N, (1,1’
0

).
(17)
# of event by cascade process \

O convolution
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Nm(z,F)=S(t,F,m)+J [ir'J dm'
"0 (17)

t S .
XJ drp,, . ,(t—7r—r" )N, (1,r").
0

assumption : daughter’s magnitude 1s independent of its mother

(GR preserved all time. It is adequate only if &« < b/2 )
N, (t,v) = P(m)N(t,7) fort >0

' magnitude m vanishes

- - - ! - - -
N(t,r)=SM(t,r)+Jdr'JdTgb(t—T,r—r')N(T,r’),
0

>0, (18)

Su(t,r)=38(r)8(t)p(M)/n,

Master Equation of ETAS = renormalized Omori’s law

N(t,r) = E[A(t)P(r)] : Expectation value(1st moment)

2017/5/29 Seismogenesis Seminar
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Continuous time random walk model (Montroll & Weiss, 1965)

 generalization of naive Random Walk model

continuous distribution ¢ (7, t) of spatial step (jump length) and time step
(wating time)

* master equation of CTRW is identical to ETAS
NP=Sy(tD+ [ i | argti=ri=F o),
0

>0, (18)

A) N(t,r) : PDF for the random walker to Just arrive at r at t.
B) Sy (t, 1) : initial condition of random walk,

C) integral on (18) denote superposition of all possible paths just having
arrived at r at t, weighted by a transfer function ¢

* Therefore we can borrow the deep knowledge of CTRW for the
understanding Earthquake clustering.



* Nand W
N(t,r) : PDF of just arriving at position r at time t
W (t,r) : PDF of being at position r at time t

0

N(z,F)=SM(t,F)+de' Jotdrgé(t—r,;—;’)N(T,;'), W(t,;)zftdt'[l—fot_t’dt”‘lf(t”)]N(t’,17).
(18) (19)

 using Laplace-Fourier transform

Su(B.k) AR T 0 ) B
1—n*if(,8)<f>(l§()2’1) W(B k)= =5 N(Bk).

N(B.k)=

(20)

* CTRW models transport phenomena in heterogeneous media. considering

carthquake as transport of stress in heterogeneous crust, correspondence between
ETAS and CTRW is natural ?

2017/5/29 Seismogenesis Seminar 18



summary : correspondence between ETAS and CTRW

TABLE 1. Correspondence between the ETAS (epidemic-type aftershock sequence) and CTRW
(continuous-time random walk) models. “PDF”* stands for probability density function.

ETAS

CTRW

W(1)

d(r)

p(m)

N(t,7)

W(t.,r)

PDF for a “daughter” to be born at time ¢
from the mother that was born at time O

PDF for a daughter to be triggered
at a distance r from its mother

Earthquake magnitude

Number of daughters
per mother of magnitude m

Average number of daughters created per mother
summed over all possible magnitudes

Subcritical aftershock regime
Critical aftershock regime

Supercritical exponentially
growing regime

Number of events of any possible
magnitude at r at time 7

PDF that an event at 7 has occurred at a time ' <t

and that no event occurred anywhere from ¢’ to ¢

PDF of waiting times
PDF of jump sizes

Tag associated with each jump

Local branching ratio

Control parameter of the random
walk survival (branching ratio)

Subcritical “birth and death”
The standard CTRW

Explosive regime of the
“birth and death” CTRW

PDF of just having
arrived at r at time 7

PDF of being at r at time ¢

2017/5/29
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4. critical regime n = 1

Derive the joint probability distribution N(t,r)
Calculate the average distance between mainshock and its aftershock R as
a power law function of elapsed time. (R~t"H)



space : Fourier transform

U

) = Ja7d T D

)

- for 1 > 2,(r?) = o2 (finite)

(k) =1—-0%k? + 0(k®)witho > 2 (23)

- for 0 < u < 2, (r?) = infinite (so-called Levy-flight)

(k) =1 — o*k* + 0(k°)witho >pu @4

d[T(1—pu)]", o<u<l
o= dm R 25)
ul'(w—1)sin(m7Tu/2)’ p==-
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time : Laplace transform

V(t)= v’ H(t)
( _(I+C)1+0 ")

for 0 < 1,

Y(B)=1—(Bc")?+O(B*) with

¢’ = C(F(l — 9))%
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for small f and k,
Su(Bk) oo Su(B:k)

N(B.k)= = N(B.k)= .
1—nW(B)D(k) 1) P 1—n+n(,86')‘9—|—n0'“k“(27)
* case n=1 1
N('B’k):SM('B’k)(,B Yot (k) Analyzed 1n detail below
C o s51)
* case n<]1v(18 - $(B.K) 1 . n o\ Um AL(1— )| 10
B e N S L :G(l_”) s

t <t'and r <r"——» Same expression as for n=1

| o oo SulBk) 1 !
| otherwise NBk=——, L+(Br*)? (1+(kr*)* (31)

N can be factorized : No diffusion
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06>1,u>?2

D(k) =1—0%2k?+ 0(k®)witho > 2, ¥(B8)=1—(Bc")?+O(B*) with

Sy(B:k)
1—n¥(B)D(Kk)

N(B.k)=

in real domain

N(t,r)«

(Dt

N(ﬁ! k) = SM(ﬁ, k)

)d/2

pc' + o?k?

exp[ —(r)%/Dt] where D=c?%/c’,

(33)

R = (|#|*)Y/?~tH with H=0.5 : standard diffusion

2017/5/29

But 8 > 1 is not appropriate
caseof 6 <17
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06<1,u>2

(012
From complicated calculation, = B (36)
' for small Dt? /2 DA S ) iy

orsmall z (r >» Dt"/2) N(t,r)—mk=0 AT (=K o] (40)

~——

2017/5/29

for large z (r < Dt?/2) N(t,r)~

C/—e |,:’|
Dtl—(e/Z) DZH/Z
X exp

N(t,r) cannot be factorized = diffusion

R ~t! with H= 0/2 : subdiffusion

Seismogenesis Seminar
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N(t,r)

0<1,u>2

2
] / t < (%)9 : increase
2

> (%)5 : power law decay (p =1-6/2)

but global decay exponent p=1-0

10° 10
time (days)

N(t,r)

@~ N~ expCOlrl]
q =2/(2 — 0)~1: exponential decay
I
10_mT 5 C(t) define diffusion with time
11011 ‘ ’
0 100 200 300 400 500

r (km)
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Numerical simulation 8 = 0.2, u = 3

2.10°

10

mean distance (km)

5.107"

2 B

10 10’ 10 10
tirjle (days)

R ~t"H with H=0.12 (predicted His 0.1)
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6<1,u<?2

(IB)H—ICIH
(Be") '+ (o)

N(B.k)=58y(B.k)

(ﬁcr)a_i_(a_k)lu' W(IB’E):SM(B’E)

R ~tH withH = % : superdiffusion or subdiffusion

Dt0/2
z expansion for small z and 1/z expansion for lagre z, z= |ﬁ| (36)
r
. (WM)
S| —
p . 7 F(1+M) CI>120 o 1+u
forsmall z (r > Dt”/2) N(t,r)= T T@Qo) |7 ﬁ (59)
p=1-—26
-0 + oo
for large z (r « Dt?/2)  N(1.r)= Dm;l‘“e/” mE:O (="
T —=(m+1)u)sin((m+1)um/2)
1 m
Xz B T(—mo)
7" a cos(mr/2) (61)

* m! sin[(m+ 17w/ u]I'(0—(m+1)6/u)|
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N(t,r) for large z can be further classified

I'(1—=2w)sin(7w)sin(70) 1I'(1+6) 1

Nz.r)= c' o’ (rla)!=2# (t/c")IH?
for ©<<0.5, p=1+6
c' Y 1
N(.r)= c'oul(0—6/w)sin(mw/w) (t/c¢')=0t0m
for 05<u<?2. ; (62)
p= 1—9+;
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0=0.2, p=0.2

N(t.r)

(a)

10

Nt

-10

10

2017/5/29

-5_

time (days)

0=0.2, p=0.9

(a)

-

-

-
-
-
-
-
-
- -

-

L

10

10"
time (days)
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Numerical simulation 0=0.2, n=0.9

1001 @)
10° , . =1 —_::_"_"R\_‘;_: -~ . 146-0/n
ci® L0 =T |
2 0! T s, TS
\‘—\,-\‘,W\*\
3 T E A ST e
s 107" : 1-20 @
o = -
8 10 10 4 10
o time (days)
. L | (0)]
111+6-6/u TR {
09
0 T5‘0.8
10 4 2 IO Iz 4
10 10 : 1(% : 10 10 0.7t
time (days
0.6 _1_—%6 ________________________
107 10°
. . ) . .
R ~t"H with H=0.25 (predicted His 0.22) r (km) B
1=0.1 (c)

r (km)

averaging over 500 sample
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Other distribution ¥(t) and ® (1)

* Y(t) and ®(r) are not power law
W(t)=he M @(r)=L,(r|)

> R ~tH withH = % : superdiffusion

1 1
at large time r «< (At)#, N(t,r)~1/tr
Despite W(t)is exponential distribution, local Omori’s law p = 1/u is generated

constant seismic rate for n=1

* nonseparable bare propagetor = microscopic diffusion process embodied
b (1=t 7= 1) =p(m) W (1 —1)D(|r—r|/\VD1),

1

V2Dt

O (|r—r,|/\Dt)= exp(—|r—ri|*/D1).

exp(—|r|?/D1).

- 1
> N(t7r)N 1_
4

1
O 27Dt
R ~tH" with H = 0.5: standard diffusion
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6. Discussion

Summarize result of different regime
Comparison to related study



Diffusion exponent

oA _
superdiffusion Brownian
diffusion

R~tim R~t05

rapid diffusion

superdiffusion subdiffusion
or subdiffusion

R~t o R~te2

seismicity rate
)
a

- 10
u

N -10°

Nel 1

1 =

n<1

ETAS predicts that seismic diffusion or =5
subdiffusion occurs and should be

observable only when the observed

Omori exponent 1s less than 1.

however, it 1s difficult to test on
seismicity data.
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Omori exponent (n =1)

Large z Small z

(r<Dt") (r>D1t")
©n<0.5 p=1+46 p=1—20/
05=u<2 p=1—0+6/u p=1—260 <
2<u p=1—06/2 Not defined *

X

A ¥

2017/5/29
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Comparison to related research

* Noir et al., 1997 (1989 DobiEQ sequence)
H =0.5 due to fluid transfer

Tajima & Kanamori, 1985 (subduction zone)
logarithmic or H=0.1diffusion

Shaw, 1993 (California)
no diffusion and p~1 «— 6 ~ 0, very small H ?

Dieterich, 1994 (RSF law)

aftershock zone expand but not grow as power law.

Marsan et al, 2000 (several catalogs)

H=0.2 < apparent diffusion due to their analysis method (counting
uncorrelated events )

Sotolongo-Costa et al., 2000 (microearthquakes in Spain)
interpreted sequence of earthquakes as a random walk process
1 different from this paper ( identify sequence as a single CTRW )
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7. Conclusion

cascade of aftershock induce aftershock diffusion.

correspondence between ETAS and CTRW

different regimes of diffusion

seismic diffusion occur and should be observed only when p <1 and
t<<t*

No anomalous stress diffusion is needed.



