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ETAS model
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Usual EQ and swarm

Cumulative Number of Events

From 2005 Obsidian Buttes catalog
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Usual EQ and swarm
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Usual EQ and swarm

Cumulative Number of Events

2002&2007 Boso swarms
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ETAS model and swarms

e ETAS lacks a quantitative relationship between
seismicity rate and stress/stressing rate.

* Swarms = EQs which do not obey Omori’s law
= anomaly of aseismic stressing rate.

Stress perturbations due to ...
* magma intrusions
e dike intrusions
 movements of volatiles(e.g., CO2)
e aqueous fluid flow
* slow slips




Obsidian Buttes

* Strike slip
- Slow slip
Kilauea

+ South flank of Kilauea Volcano

- Slow earthquake

Boso
* Recurring slow slip
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Swarms driven by slow slip

* Slow slip = geodetic data
Swarms = seismic data

* Energy release
e Slowslip:Mw =65 < Swarm : Mw =4
(repeating slow EQ at offshore of central Honshu; Ozawa et al., 2007)
 Slowslip: Mw =57 <& Swarm : Mw =55
(strike-slip fault in the Salton Trough; Lohman and McGuire, 2007)

Swarms: seismicity that cover unusually large area for their
cumulative seismic moment. (Vidale and Shearer, 2006)



Combining the ETAS and rate-state model

* ETAS lacks a quantitative relationship between
seismicity rate and stress/stressing-rate.

* Swarms = EQs which do not obey Omori’s law
= anomaly of aseismic stressing rate.

e Rate-state model of Dieterich(1994) can handle
temporal change in stressing rate.

DIETERICH + ETAS
= [ETAS with stressing rate | model?



Rate-state model by Dieterich(1994)
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Rate-state model by Dieterich(1994)
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Rate-state model by Dieterich(1994)
_ T dt
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For sudden change of stress AS
under constant stressing rate S
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For stress perturbation of same magnitude: AS= 0.1MPa,
(and assuming that background stressing-rate is stationary)
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Combining the ETAS and rate-state models

(X: is related to spatial extent of a stress step /
independent of stressing rate.

p: is essentially 1 from eq.5(below).

rs
R(t) = — 5 ., S#0
[g—rexp(%s) — 1 exph—j + 1

(Though,there said to be influence of other factors, such as
heterogeneity in temperature/heat flow or structure on fault, which
is independent of stressing rate)



Combining the ETAS and rate-state models

C: can be analytically derived from RSF-model.

However, ¢ can not be clearly obtained from
observation, so it is not worthwhile discussing
stressing rate dependence of c.

K: relationship is unclear, but rate-state model
predicts K increases with stressing rate.

: relationship is unclear, though rate-state model

predicts that bg seismicity rate depends on stressing
rate.



Rate-state model predicts that ...

a is independent of stressing rate.
p is essentially 1

c is not worth discussing, as it cannot be well
determined by observation.

K increases with stressing rate, though relationship is
unclear.

KU depends on stressing rate, though relationship is
unclear.



Adopting ETAS to swarm
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Poor quality of fit may be because p was treated as constant,
and it suggest stressing rate is time-variable.



Parameters of Obsidian Buttes
Before & during swarm

MMI-“-__

Boso  10.13 0.022 0. 0.096
(2002) 0.07 2.09 0.9 1.0 0.0005
Kilauea |0.28 0.16 1.24 1.21 0.002
(2005) 0.96 0.89 0.61 0.92 0.003
Obsidia | 0.61 0.031 0.88 1.1 0.001

n Buttes 1.4 225 1.05 1.0 0.001
Boso  |0.20 0.013 0.55 0.88 0.0004
(2007) 0.61 2.4 1.37 1.0 0.0008

K does not increase

so much... ’
X 2-4

X10-1000 = x~2 No change No change



Is K stressing-rate dependent?

Helmstetter and Sornette, 2003
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Rate-state prediction and actual aftershocks
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Contribution of Ao...?

Compare aftershock productivity N of AS = 1MPa
Under two case:

N1: bg stressing rate (S’bg = 0.2MPa/yr)
N2: 3 days after S has changed to 101 ~10* x Sbg

t 2005 Obsidian Buttes M5.1
a, bg
| occurred 3 days after
ﬁgf 12'" stressing rate change.

t,(Ac,S) = 1800days X —— x (.i

1MPa



ta(Ao,S) = 1800days X
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In short,

During swarm,
» Substantial Increase of seismicity (W)
» Small increase in aftershock (K)

was observed, but

those two cannot happen at once in rate-state model



CORRECTION OF ETAS MODEL
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Combining the ETAS and rate-state model

e ETAS does not explicitly include information of
stress.

e Swarms = anomaly of tectonic stressing rate.

* Rate-state model of Dieterich(1994) can treat
change in stressing rate.

DIETERICH + ETAS
= [ETAS + stressing rate ] model



